用户名: 密码: 验证码:
Structural Stability, Electronic and Magnetic Properties of O-doped Monolayer C_2N
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural Stability, Electronic and Magnetic Properties of O-doped Monolayer C_2N
  • 作者:陈颖 ; 刘光华 ; 李逸鹏 ; 孔龙娟 ; 刘鹏飞
  • 英文作者:CHEN Ying;LIU Guang-Hua;LI Yi-Peng;KONG Long-Juan;LIU Peng-Fei;Department of Physics, Tianjin Polytechnic University;Institute of Physics, Chinese Academy of Sciences;Institute of High Energy Physics, Chinese Academy of Sciences;Dongguan Institute of Neutron Science;
  • 英文关键词:O-doping;;electronic properties;;magnetic properties;;structural stability
  • 中文刊名:JGHX
  • 英文刊名:结构化学(英文版)
  • 机构:Department of Physics, Tianjin Polytechnic University;Institute of Physics, Chinese Academy of Sciences;Institute of High Energy Physics, Chinese Academy of Sciences;Dongguan Institute of Neutron Science;
  • 出版日期:2019-01-15
  • 出版单位:Chinese Journal of Structural Chemistry
  • 年:2019
  • 期:v.38;No.291
  • 基金:supported by the National Natural Science Foundation of China(No.21576208)
  • 语种:英文;
  • 页:JGHX201901009
  • 页数:7
  • CN:01
  • ISSN:35-1112/TQ
  • 分类号:81-87
摘要
Based on the first-principles of density functional theory, the structural stability,electronic and magnetic properties of the O-doped monolayer C_2N are investigated. In details, the lattice parameters, band structures, density of states and phonon dispersions of O-doped monolayer C_2N are obtained and analyzed. Our results show that the introduction of oxygen dopants can cause a significant local lattice distortion. The band structure indicates that monolayer C_2N is a semiconductor with a direct band gap of 1.631 eV. The electronic properties of monolayer C_2N can be regulated by oxygen dopant atoms with different numbers. However, doping nonmetal oxygen element in monolayer C_2N does not affect its magnetic properties. In other words, the pure and O-doped systems are all nonmagnetic. The phonon dispersions of all the O-doped cases are found to have not any imaginary frequencies, which indicates that the structures of these O-doped systems have good structural stability.
        Based on the first-principles of density functional theory, the structural stability,electronic and magnetic properties of the O-doped monolayer C_2N are investigated. In details, the lattice parameters, band structures, density of states and phonon dispersions of O-doped monolayer C_2N are obtained and analyzed. Our results show that the introduction of oxygen dopants can cause a significant local lattice distortion. The band structure indicates that monolayer C_2N is a semiconductor with a direct band gap of 1.631 eV. The electronic properties of monolayer C_2N can be regulated by oxygen dopant atoms with different numbers. However, doping nonmetal oxygen element in monolayer C_2N does not affect its magnetic properties. In other words, the pure and O-doped systems are all nonmagnetic. The phonon dispersions of all the O-doped cases are found to have not any imaginary frequencies, which indicates that the structures of these O-doped systems have good structural stability.
引文
(1)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang,Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Electric field effect in atomically thin carbon films.Science 2004,306,666-669.
    (2)Mahmood,J.;Lee,E.K.;Jung,M.;Shin,D.;Jeon,I.;Jung,S.;Choi,H.;Seo,J.;Bae,S.;Sohn,S.;Park,N.;Oh,J.H.;Shin,H.;Baek,J.Nitrogenated holey two-dimensional structures.Nat.Commun.2015,6.
    (3)Kang,J.;Horzum,S.;Peeters,F.M.Heterostructures of graphene and nitrogenated holey graphene:moirépattern and dirac ring.Phys.Rev.B 2015,92.
    (4)Jiuyu,S.;Ruiqi,Z.;Xingxing,L.;Jinlong,Y.A many-body GW plus BSE investigation of electronic and optical properties of C2N.Appl.Phys.Lett.2016,109,133104-133108.
    (5)Wang,D.;Han,D.;Liu,L.;Niu,L.Structure and electronic properties of C2N/graphene predicted by first-principles calculations.RSC Adv.2016,6,28484-28488.
    (6)Guan,Z.;Lian,C.;Hu,S.;Ni,S.;Li,J.;Duan,W.Tunable structural,electronic,and optical properties of layered two-dimensional C2N and MoS2van der Waals heterostructure as photovoltaic material.J.Phys.Chem.C 2017,121,3654-3660.
    (7)Tromer,R.M.;Da Luz,M.G.E.;Ferreira,M.S.;Pereira,L.F.C.Atomic adsorption on nitrogenated holey graphene.J.Phys.Chem.C 2017,121,3055-3061.
    (8)Yagmurcukardes,M.;Horzum,S.;Torun,E.;Peeters,F.M.;Senger,R.T.Nitrogenated,phosphorated and arsenicated monolayer holey graphenes.Phys.Chem.Chem.Phys.2016,18,3144-3150.
    (9)Mahmood,J.;Li,F.;Jung,S.;Okyay,M.S.;Ahmad,I.;Kim,S.;Park,N.;Jeong,H.Y.;Baek,J.An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction.Nat.Nanotechnol.2017,12,441-446.
    (10)Mortazavi,B.;Rahaman,O.;Rabczuk,T.;Pereira,L.F.C.Thermal conductivity and mechanical properties of nitrogenated holey graphene.Carbon.2016,106,1-8.
    (11)Wang,Y.;Song,N.;Jia,M.;Yang,D.;Panashe,C.;Yang,Y.;Wang,J.Tunable electronic structure and magnetic moment in C2N nanoribbons with different edge functionalization atoms.Phys.Chem.Chem.Phys.2017,19,15021-15029.
    (12)Kishore,M.;Ravindran,P.Tailoring the electronic band gap and band edge positions in the C2N monolayer by P and As substitution for photocatalytic water splitting.J.Phys.Chem.C 2017,121,22216-22224.
    (13)Yang,Y.;Li,W.;Zhou,H.;Zhang,X.;Zhao,M.Tunable C2N membrane for high efficient water desalination.Sci.Rep.2016,6.
    (14)He,B.L.;Shen,J.S.;Tian,Z.X.Iron-embedded C2N monolayer:a promising low-cost and high-activity single-atom catalyst for CO oxidation.Phys.Chem.Chem.Phys.2016,18,24261-24269.
    (15)Liang,Z.;Xu,B.;Xiang,H.;Xia,Y.;Yin,J.;Liu,Z.Carrier-tunable magnetism in two dimensional graphene-like C2N.RSC Adv.2016,6,54027-54031.
    (16)Wang,H.;Li,X.;Yang,J.The g-C3N4/C2N Nanocomposite:a g-C3N4-based water-splitting photocatalyst with enhanced energy efficiency.ChemPhysChem.2016,17,2100-2104.
    (17)Zhu,L.;Xue,Q.;Li,X.;Wu,T.;Jin,Y.;Xing,W.C2N:an excellent two-dimensional monolayer membrane for He separation.J.Mater.Chem.A2015,3,21351-21356.
    (18)Qu,Y.;Li,F.;Zhao,M.Efficient hydrogen isotopologues separation through a tunable potential barrier:The case of a C2N membrane.Sci.Rep.2017,7.
    (19)Mahmood,J.;Jung,S.;Kim,S.;Park,J.;Yoo,J.;Baek,J.Cobalt oxide encapsulated in C2N-h 2D network polymer as a catalyst for hydrogen evolution.Chem.Mater.2015,27,4860-4864.
    (20)Xu,B.;Xiang,H.;Wei,Q.;Liu,J.Q.;Xia,Y.D.;Yin,J.;Liu,Z.G.Two-dimensional graphene-like C2N:an experimentally available porous membrane for hydrogen purification.Phys.Chem.Chem.Phys.2015,17,15115-15118.
    (21)Ma,D.W.;Wang,Q.;Yan,X.;Zhang,X.;He,C.;Zhou,D.;Tang,Y.;Lu,Z.;Yang,Z.3d transition metal embedded C2N monolayers as promising single-atom catalysts:a first-principles study.Carbon.2016,105,463-473.
    (22)Li,X.;Zhong,W.;Cui,P.;Li,J.;Jiang,J.Design of efficient catalysts with double transition metal atoms on C2N layer.J.Phys.Chem.Lett.2016,7,1750-1755.
    (23)Guan,S.;Cheng,Y.;Liu,C.;Han,J.;Lu,Y.;Yang,S.A.;Yao,Y.Effects of strain on electronic and optic properties of holey two-dimensional C2Ncrystals.Appl.Phys.Lett.2015,107.
    (24)Zhang,R.;Li,B.;Yang,J.Effects of stacking order,layer number and external electric field on electronic structures of few-layer C2N-h2D.Nanoscale 2015,7,14062-14070.
    (25)Du,J.;Xia,C.;Xiong,W.;Zhao,X.;Wang,T.;Jia,Y.Tuning the electronic structures and magnetism of two-dimensional porous C2N via transition metal embedding.Phys.Chem.Chem.Phys.2016,18,22678-22686.
    (26)Yang,Y.;Guo,M.;Zhang,G.;Li,W.Tuning the electronic and magnetic properties of porous graphene-like carbon nitride through 3d transition-metal doping.Carbon.2017,117,120-125.
    (27)Zheng,Z.D.;Wang,X.C.;Mi,W.B.Tunable electronic structure of monolayer semiconductor g-C2N by adsorbing transition metals:a first-principles study.Carbon.2016,109,764-770.
    (28)Sahin,H.Structural and phononic characteristics of nitrogenated holey graphene.Phys.Rev.B 2015,92.
    (29)Segall,M.D.;Lindan,P.L.D.;Probert,M.J.;Pickard,C.;Hasnip,P.J.;Clark,S.J.;Payne,M.C.First-principles simulation:ideas,illustrations and the CASTEP code.J.Phys.:Condens.Matter.2002,14,2717-2744.
    (30)Perdew,J.P.;Burke,K.;Ernzerhof,M.Generalized gradient approximation made simple.Phys.Rev.Lett.1996,77,3865-3868.
    (31)Vanderbilt,D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys.Rev.B 1990,41,7892-7895.
    (32)Pfrommer,B.G.;Cote,M.;Louie,S.G.;Cohen,M.L.Relaxation of crystals with the quasi-Newton method.J.Comput.Phys.1997,131,233-240.
    (33)Monkhorst,H.J.;Pack,J.D.Special points for Brillouin-zone integrations.Phys.Rev.B 1976,13,5188-5192.
    (34)Kishore,M.R.A.;Ravindran,P.Enhanced photocatalytic water splitting in a C2N monolayer by C-site isoelectronic substitution.ChemPhysChem.2017,18,1526-1532.
    (35)Zhu,J.;Zhao,Y.;Zeng,S.;Ni,J.Half-metallicity in hole-doped nitrogenated honey graphene:a first-principles study.Phys.Lett.A 2017,381,1097-1101.
    (36)Chakrabarty,S.;Das,T.;Banerjee,P.;Thapa,R.;Das,G.P.Electron doped C2N monolayer as efficient noble metal-free catalysts for CO oxidation.Appl.Surf.Sci.2017,418,92-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700