用户名: 密码: 验证码:
高级别船板钢生产过程中夹杂物的演变规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Inclusions evolution of high-grade ship plate steel in practical production processes
  • 作者:周宇涛 ; 杨树峰 ; 李京社 ; 梁雪
  • 英文作者:ZHOU Yu-tao;YANG Shu-feng;LI Jing-she;LIANG Xue;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;
  • 关键词:船板钢 ; 夹杂物 ; 钙处理 ; 钙铝酸盐 ; 轧制
  • 英文关键词:ship plate steel;;inclusion;;calcium treatment;;Ca-aluminate;;rolling
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:北京科技大学冶金与生态工程学院;
  • 出版日期:2019-01-15
  • 出版单位:钢铁
  • 年:2019
  • 期:v.54
  • 基金:国家自然科学基金资助项目(51674023)
  • 语种:中文;
  • 页:GANT201901007
  • 页数:10
  • CN:01
  • ISSN:11-2118/TF
  • 分类号:39-48
摘要
通过采用扫描电镜对船板钢F40中的夹杂物进行全流程系统分析,研究了冶炼过程中夹杂物的形成和演变规律,并采用夹杂物的弹性模量概念对其在轧制过程中的变形机理进行解释。结果表明,LF出站后钢中的主要夹杂物为MgO-Al2O3复合夹杂,在钙处理后夹杂物逐渐向低熔点的CaO-Al2O3-MgO-CaS系夹杂转变。在轧制过程中,高弹性模量的夹杂物,在轧制中相对塑性变形低。热力学计算表明,当船板钢中的w([Als])为0.02%~0.04%时,为使夹杂物改性完全,钙处理后钢液中的w([Ca])应控制在0.001 8%~0.002 8%。为避免钙处理后生成CaS,可通过控制w([S])在0.002 1%以内,减小其对浇注过程和钢性能的不利影响。
        Based on the systematic sampling and the scanning electron microscopy(SEM)analysis on inclusions,the formation and the evolution of inclusions in ship plate steel F40 during steelmaking process were studied by industrial trials,and the Young's modulus was used to evaluate the deformability of inclusions during the rolling process. The results show that the main inclusions after LF refining are compound MgO-Al_2O_3 inclusions,and inclusions gradually transform into low-melting CaO-Al_2O_3-MgO-CaS inclusions after the calcium treatment. The inclusion with a high Young's modulus have a relatively low plastic deformation during the rolling process. The thermodynamic calculation results show that w([Als])of the ship steel is controlled from 0.02% to 0.04%,w([Ca])in the molten steel after calcium treatment could be controlled in 0.001 8%~0.002 8%. To avoid the formation of CaS inclusions after the calcium treatment,w([S])should be controlled to about 0.002 1% to reduce its adverse effect on the casting process and steel properties.
引文
[1]杨才福,苏航.高性能船舶及海洋工程用钢的开发[J].钢铁,2012,47(12):1.(YANG Cai-fu,SU Hang.Research and development of high performance shipbuilding and marine engineering steel[J].Iron and Steel,2012,47(12):1.)
    [2]翁宇庆,陈蕴博,刘玠,等.特殊钢在先进装备制造业应用中的战略研究[M].北京:冶金工业出版社,2012.(WENG Yuqing,CHEN Yun-bo,LIU Jie,et al.Research on Strategic Application of Special Steel in Advanced Equipment Manufacturing[M].Beijing:Press of Metallurgy Industry,2012.)
    [3]郝鑫,王新华,杨光维,等.高级别船板钢炉外精炼过程洁净度研究[J].北京科技大学学报,2014,36(11):1471.(HAOXin,WANG Xin-hua,YANG Guang-wei,et al.Cleanliness study of high level ship plate steel during secondary refiningprocesses[J].Journal of University of Science and Technology Beijing,2014,36(11):1471.)
    [4]吴华杰,元鹏飞,岳峰.BOF-LF-RH-CC生产DH36船板钢洁净度[J].北京科技大学学报,2011,33(增刊):131.(WU Huajie,YUAN Peng-fei,YUE Feng.Cleanliness of DH36 ship plate steel produced by BOF-LF-RH-CC processes[J].Journal of University of Science and Technology Beijing,2011,33(s):131.)
    [5]彭开玉,刘洋,张立峰.持续氧化对钢水钙处理过程中夹杂物的影响[J].中国冶金,2018,28(3):16.(PENG Kai-yu,LIUYang,ZHANG Li-feng.Effect of continuous reoxidation on inclusions in molten steel during calcium treatment[J].China Metallurgy,2018,28(3):16.)
    [6]刘浏.高品质特殊钢关键生产技术[J].钢铁,2018,53(4):1.(LIU Liu.Key production-technology for high-quality special steels[J].Iron and Steel,2018,53(4):1.)
    [7]Wakoh M,Sawai T,Mizoguchi S.Effect of S content on the MnS precipitation in steel with oxide nuclei[J].ISIJ International,1996,36(8):1014.
    [8]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2006.(HUANG Xi-hu.Metallurgy Theory of Iron and Steel[M].Beijing:Press of Metallurgy Industry,2006.)
    [9]程丙贵,武凤娟,刘东升.屈服强度785 MPa低碳含铜船板钢的组织和性能[J].钢铁,2015,50(8):83.(CHENG Binggui,WU Feng-juan,LIU Dong-sheng.Microstructure and mechanical properties of low carbon copper-containing steel plate for shipbuilding with yield strength of 785 MPa[J].Iron and Steel,2015,50(8):83.)
    [10]阳开生.热处理及NbV N微合金化对船板钢组织性能的影响[J].中国冶金,2017,27(10):34.(YANG Kai-sheng.Effect of heat treatment process and NbV N microalloying on mechanical property and microstructure of grade ship plate steel[J].China Metallurgy,2017,27(10):34.)
    [11]杨俊,杜江,陈波涛,等.超低氧精炼时钙处理对氧化物夹杂的影响[J].钢铁,2015,50(1):19.(YANG Jun,DU Jiang,CHEN Bo-tao,et al.Influence of calcium treatment on oxide inclusions in ultra-low oxygen refining process[J].Iron and Steel,2015,50(1):19.)
    [12]YANG S F,WANG Q Q,ZHANG L F,et al.Formation and modification of MgO·Al2O3-based inclusions in alloy steels[J].Metallurgical and Materials Transactions:B,2012,43(4):731.
    [13]杨树峰.铝脱氧合金钢中MgO·Al2O3夹杂物控制研究[D].北京:北京科技大学,2010.(YANG Shu-feng.Study on the Control of Mg O·Al2O3Inclusionin the Alloy Steel Skilled by Al[D].Beijing:University of Science and Technology Beijing,2010.)
    [14]贺道中,周宇涛.高强度船板钢钙处理热力学计算分析-夹杂物变质研究和应用[J].特殊钢,2017,38(3):23.(HE Daozhong,ZHOU Yu-tao.Study andapplicationon thermodynamic calculation analysis of calcium treatment and modification of inclusions in high strength ship plate steel[J].Special Steel,2017,38(3):23.)
    [15]陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,2010.(CHEN Jia-xiang.Common charts and databook for steelmaking[M].Beijing:Press of Metallurgy Industry,2010.)
    [16]YANG G W,WANG X H.Inclusion evolution after calcium addition in low carbon Al-killed steel with ultra low sulfur content[J].ISIJ International,2015,55(1):126.
    [17]XU J F,HUANG F X,WANG X H.Formation mechanism of CaS-Al2O3inclusions inlow sulfur Al-killed steel after calcium treatment[J].Metallurgical and Materials Transactions:B,2017,47(2):1217.
    [18]王新华,陈斌,姜敏,等.渣-钢反应对高强度合金结构钢中生成较低熔点非金属夹杂物的影响[J].钢铁,2008,43(12):28.(WANG Xin-hua,CHEN Bin,JIANG Min,et al.Effect of slagmetal reaction on formation of non-metallic inclusions of lower melting temperature in high strength slloyed structural steel[J].Iron and Steel,2008,43(12):28.)
    [19]Gladman T.The Physical Metallurgy of Microalloyed Steels[M].London:The Institute of Materials,1997.
    [20]潘涛,杨志刚,白秉哲,等.钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究[J].金属学报,2003,39(10):1037.(PAN Tao,YANG Zhi-gang,BAI Bing-zhe,et al.Study of thermal stress and strain energy inγ-Fe matrix around inclusion caused by thermal coefficient difference[J].Acta Metallurgica Sinica,2003,39(10):1037.)
    [21]Hillig W B.A methodology for estimating the mechanical properties of oxidesat high temperatures[J].Journal of the American Ceramic Society,1993,76(1):129.
    [22]Cicutti C E,Madias J,Gonzatez J C.Control of microinclusions in calcium treated aluminium killed steels[J].Ironmaking and Steelmaking,1997,24(2):155.
    [23]Ashizuka M,Aimoto Y,Okuno T.Mechanical properties of sintered silicate crystals[J].Journal of the Ceramic Society of Japan,2010,97(5):544.
    [24]赵迪,闫波,刘丹,等.提高Q345B钢板探伤合格率的工艺措施[J].中国冶金,2017,27(6):48.(ZHAO Di,YAN Bo,LIUDan,et al.Technological measures for improving qualified rate of Q345B steel plate flaw detection[J].China Metallurgy,2017,27(6):48.)
    [25]ZHANG L F,GUO C G,YANG W,et al.Deformability of oxide inclusions in tire cord steels[J].Metallurgical and Materials Transactions:B,2018,49(2):803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700