用户名: 密码: 验证码:
交流干扰下不同组织X80钢在碱性土壤环境中的腐蚀行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion behavior of X80 pipeline steel with different microstructure under AC interference in alkaline soil environment
  • 作者:朱敏 ; 王亚铭 ; 袁永锋 ; 尹思敏 ; 郭绍义
  • 英文作者:ZHU Min;WANG Ya-ming;YUAN Yong-feng;YIN Si-min;GUO Shao-yi;School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University;
  • 关键词:X80钢 ; 微观组织 ; 交流干扰 ; 钝化膜 ; 协同作用
  • 英文关键词:X80 steel;;microstructure;;AC interference;;passive film;;synergistic effect
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:浙江理工大学机械与自动控制学院;
  • 出版日期:2019-01-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.223
  • 基金:国家自然科学基金(51501164);; 浙江省自然科学基金(LY18E010004);; 中国博士后科学基金(2017M621974);; 国家科技基础条件平台建设项目(2005DKA10400)
  • 语种:中文;
  • 页:JSCL201901014
  • 页数:9
  • CN:01
  • ISSN:11-4545/TG
  • 分类号:104-112
摘要
采用极化曲线、Mott-Schottky曲线和浸泡腐蚀实验研究了交流干扰下不同组织X80钢在CO_3~(2-)/HCO_3~-溶液中的腐蚀行为,并探讨了交流电和温度的协同作用。结果表明:随交流电流密度的增加,不同组织钢的钝性下降,维钝电流密度增加,临界点蚀电位负移,钝化膜内的点缺陷数量增加;交流干扰可阻碍钝化膜的形成,降低膜的稳定性,增加膜破裂的可能性,减薄膜的厚度;交流电的作用对不同组织钢的钝化膜的破坏是不同的,正火组织钢钝化膜的稳定性最好;交流干扰下不同组织钢的腐蚀形态均为局部腐蚀,正火组织钢的耐蚀性最好,其次为热轧组织,退火组织的耐蚀性最差。X80钢的交流腐蚀行为与其组织结构密切相关,交流干扰和温度的升高可产生协同作用,明显降低钝化膜的稳定性,加剧腐蚀的发生。
        The corrosion behavior of X80 pipeline steel with different microstructure under AC interference in CO_3~(2-)/HCO_3~- solution was investigated by means of polarization curves, Mott-Schottky curve and immersion corrosion test, and the synergistic effect of AC interference and temperature was also analyzed. The results show that with the increase of AC current density, the passivity of the X80 steel with different microstructure reduces, the passive current density increases, the critical pitting potential shifts negatively and the amount of point defects in the passive film increases. The AC interference can inhibit the formation of passive film, reduce the stability of the film, enhance the breakdown possibility of the film and decrease the film thickness. The effect of AC on the damage of passive film of the steel with different microstructure is different, compared with other microstructure, the stability of the passive film formed on the steel with normalized microstructure under AC interference is the best. The corrosion morphology of the steel with different microstructure under AC interference is local corrosion, and the corrosion resistance of the steel with normalized microstructure is the best, followed by hot-rolled microstructure, and the corrosion resistance of annealed microstructure is the worst. The AC corrosion behavior of the X80 steel in the solution is closely related to its microstructure, and the AC interference and the increase of temperature can produce synergistic effect, which can obviously reduce the stability of passive film and aggravate the occurrence of corrosion.
引文
[1] NACE 35110-2010.AC corrosion state-of-the-art:corrosion rate,mechanism,and mitigation requirements[C]//NACE Corrosion 2010,Houston,USA,2010.
    [2] Hosokawa Y,Kajiyama F,Fukuoka T.Alternating current corrosion risk arising from alternating current-powered rail transit systems on cathodically protected buried steel pipelines and its measures[J].Corrosion,2004,60:408-413.
    [3] Siler-Evans K,Hanson A,Sunday C,et al.Analysis of pipeline accidents in the United States from 1968 to 2009[J].International Journal of Critical Infrastructure Protection,2014,7(4):257-269.
    [4] Wakelin R G,Gummow R A,Segall S M.AC corrosion-case histories test procedures and mitigation[C]//NACE Corrosion 1998,San Diego,USA,1998,565.
    [5] Fu A Q,Cheng Y F.Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution[J].Corrosion Science,2010,52(2):612-619.
    [6] Kuang D,Cheng Y F.Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions[J].Corrosion Science,2014,85:304-310.
    [7] Wang L W,Cheng L J,Li J R,et al.Combined effect of alternating current interference and cathodic protection on pitting corrosion and stress corrosion cracking behavior of X70 pipeline steel in near-neutral pH environment[J].Materials,2018,11:465-484.
    [8] Zhu M,Du C W,Li X G,et al.Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution[J].Corrosion Science,2014,87:224-232.
    [9] Zhu M,Du C W,Li X G,et al.Effect of AC current density on stress corrosion cracking behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution[J].Electrochimica Acta,2014,117:351-359.
    [10] Chin D T,Venkatesh S.A study of alternating voltage modulation on the polarization of mild steel[J].Journal of the Electrochemical Society,1979,126:1908-1913.
    [11] Goidanich Sara,Lazzari Luciano,Ormellese Marco.AC corrosion.part 2:parameters influencing corrosion rate[J].Corrosion Science,2010,52(3):916-922.
    [12] Xiao H Y,Lalvani S B.A linear model of alternating voltage-induced corrosion[J].Journal of the Electrochemical Society,2008,155:69-74.
    [13] Yunovich M,Thompson N G.AC corrosion:mechanism and proposed model[C]//IPC (International Pipeline Conference) 2004,Calgary,Canada,2004,574.
    [14] Bertocci U.AC induced corrosion:the effect of an alternating voltage on electrodes under charge-transfer control[J].Corrosion,1979,35(5):211-215.
    [15] Lalvani S B,Lin X.A revised model for predicting corrosion of materials induced by alternating voltages[J].Corrosion Science,1996,38(10):1709-1719.
    [16] Goidanich Sara,Lazzari Luciano,Ormellese Marco.AC corrosion.part 1:effects on overpotentials of anodic and cathodic processes[J].Corrosion Science,2010,52(2):491-497.
    [17] Zhu J Y,Xu L N,Feng Z C,et al.Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J].Corrosion Science,2016,111:391-403.
    [18] Qiao Q,Cheng G X,Wu W,et al.Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors[J].Engineering Failure Analysis,2016,64:126-143.
    [19] Alves V A,Brett C M A.Characterization of passive films formed on mild steels in bicarbonate solution by EIS[J].Electrochimica Acta,2002,47(13/14):2081-2091.
    [20] Li W S,Luo J L.Uniformity of passive films formed on ferrite and martensite by different inorganic inhibitors[J].Corrosion Science,2002,44(8):1695-1712.
    [21] Ningshen S,Kamachimudali U,Mittal V,et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J].Corrosion Science,2007,49(2):481-496.
    [22] Goossens A,Vazquez M,Macdonald D D.The nature of electronic states in anodic zirconium oxide films part 1:the potential distribution[J].Electrochimica Acta,1996,41(1):35-45.
    [23] Sunseri C,Piazza S,Quarto F Di.Photocurrent spectroscopic investigations of passive films on chromium[J].Journal of the Electrochemical Society,1990,137(8):2411-2417.
    [24] Luo H,Dong C F,Li X G,et al.The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride[J].Electrochimica Acta,2012,64:211-220.
    [25] Luo H,Dong C F,Xiao K,et al.Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution[J].Applied Surface Science,2011,258(1):631-639.
    [26] 李党国,冯耀荣,白真权,等.温度、pH 值和氯离子对 X80 钢钝化膜内点缺陷扩散系数的影响[J].化学学报,2008,66(10):1151-1158.LI Dang-guo,FENG Yao-rong,BAI Zhen-quan,et al.Influences of temperature,pH value and chloride ion on the diffusivity of point defect in the passive film on X80 pipeline steel[J].Acta Chimica Sinica,2008,66(10):1151-1158.
    [27] Chin D T,Sachdev P.Corrosion by alternating current:polarization of mild steel in neutral electrolytes[J].Journal of the Electrochemical Society,1983,130(8):1714-1718.
    [28] Blackwood D J.Influence of the space-charge region on electrochemical impedance measurements on passive oxide films on titanium[J].Electrochimica Acta,2000,46(4):563-569.
    [29] Wang L W,Du C W,Liu Z Y,et al.Influence of carbon on stress corrosion cracking of high strength pipeline steel[J].Corrosion Science,2013,76:486-493.
    [30] Clover D,Kinsella B,Pejcic B,et al.The influence of microstructure on the corrosion rate of various carbon steels[J].Journal of Applied Electrochemistry,2005,35:139-149.
    [31] Wang Y P,Zuo X R,Li J L.Corrosion resistance of the welded joint of submarine pipeline steel with ferrite plus bainite dual-phase microstructure[J].Steel Research International,2015,86(11):1260-1270.
    [32] 马歌,左秀荣,洪良,等.深海用X70管线钢焊接接头腐蚀行为研究[J].金属学报,2018,54(4):527-536.MA Ge,ZUO Xiu-rong,HONG Liang,et al.Investigation of corrosion behavior of welded joint of X70 pipeline steel for deep sea[J].Acta Metallurgica Sinica,2018,54(4):527-536.
    [33] Mohammadi F,Eliyan F F,Alfantazi A.Corrosion of simulated weld HAZ of API X80 pipeline steel[J].Corrosion Science,2012,63:323-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700