用户名: 密码: 验证码:
硫酸盐侵蚀下高延性纤维混凝土力学性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on mechanical properties of high ductility fiber reinforced concrete under sulfate erosion
  • 作者:寇佳亮 ; 林亚党 ; 席方勇 ; 温丛格
  • 英文作者:Kou Jialiang;Lin Yadang;Xi Fangyong;Wen Congge;School of Civil Engineering & Architecture,Xi'an University of Technology;Zhengzhou Institute of Science and Technology;
  • 关键词:高延性纤维混凝土 ; 硫酸盐-干湿循环 ; 硫酸盐侵蚀 ; 本构关系 ; 单轴受压
  • 英文关键词:high ductility fiber concrete;;sulfate-dry-wet cycle;;sulfate erosion;;constitutive relation;;uniaxial compression
  • 中文刊名:JCJG
  • 英文刊名:Building Structure
  • 机构:西安理工大学土木建筑工程学院;郑州科技学院;
  • 出版日期:2019-01-30
  • 出版单位:建筑结构
  • 年:2019
  • 期:v.49;No.495
  • 基金:国家自然科学基金资助项目(51408487);; 中国住建部科学技术资助项目(2014-K2-037);; 中国博士后科学基金第56批面上资助项目(2014M562437);; 陕西省自然科学基金资助项目(2014JQ7292);; 陕西省住房城乡建设科技计划项目(2016-K89);; 陕西省博士后科学基金资助项目;; 西安市建设科技项目(SJW2015-09)
  • 语种:中文;
  • 页:JCJG201903015
  • 页数:7
  • CN:03
  • ISSN:11-2833/TU
  • 分类号:85-91
摘要
高延性纤维混凝土(HDFC)具有良好的裂缝控制能力、高强度和韧性。采用硫酸盐-干湿循环试验方法对HDFC试件进行了侵蚀试验,研究其抗侵蚀性能。试验对30个(10组) HDFC立方体试件进行单轴受压试验,测定不同硫酸盐侵蚀次数后HDFC的表观特征以及各项基本力学性能,包括极限承载力、峰值应变和裂缝状态。试验结果表明,经过150次硫酸盐侵蚀后HDFC具有良好的裂缝控制能力,试件出现较少的细密裂纹,表现出良好的抗侵蚀性能。通过分析HDFC应力-应变曲线,得到HDFC干湿循环本构模型曲线,与试验曲线对比发现,本构模型曲线与试验曲线较为吻合。
        High ductility fiber concrete( HDFC) has good crack control ability,high strength and toughness. The sulfate-dry-wet cyclic test method was used to study the corrosion resistance of HDFC specimens. Ten groups of 30 HDFC cube specimens were tested under uniaxial compression. The apparent characteristics and basic mechanical properties of HDFC after different sulfate erosion times were measured,including ultimate bearing capacity,peak strain and crack state.The test results show that HDFC has good crack control ability after 150 times of sulfate erosion,the specimens have fewer fine cracks and shows good corrosion resistance performance. By analyzing the stress-strain curve of HDFC,the constitutive model curve of dry-wet cycle of HDFC was obtained. Compared with the experimental curve,it is found that the constitutive model curve is in good agreement with the experimental curve.
引文
[1] AL-DULAIJAN S U,MASLEHUDDIN M,AL-ZAHRAIN M M, et al. Sulfate resistance of plain and blended cement exposed to varying concentration of sodium sulfate[J]. Cement and Concrete Composites,2003,25(4):429-437
    [2]钟海明.荷载-干湿循环作用下混凝土抗硫酸盐侵蚀性能研究[D].广州:广州大学,2012.
    [3]孔琳洁,欧阳东,傅浩,等.聚丙烯纤维对混凝土耐硫酸盐腐蚀性能的影响[J].硅酸盐通报,2013,32(8):1650-1656.
    [4]杨全兵,杨钱荣.硫酸钠盐结晶对混凝土破坏的影响[J].硅酸盐学报,2007,35(7):877-880.
    [5]王学志,贺晶晶,邹浩飞,等.玄武岩-聚丙烯混杂纤维混凝土硫酸盐腐蚀试验研究[J].混凝土与水泥制品,2014,5(5):50-54.
    [6] SIDERIS K K,SAVVA A E,PAPAYIANNI J. Sulfate resistance and carbonation of plain and blended cements[J]. Cement and Concrete Composites,2006,28(1):47-56.
    [7]连俊英,邓勇,华渊.混杂纤维混凝土强度研究[J].石家庄铁道学院学报,1995,8(4):21-26.
    [8]寇佳亮,梁兴文,邓明科.延性纤维增强混凝土剪力墙恢复力模型试验与理论研究[J].土木工程学报,2013,46(10):58-70.
    [9] LI V C,LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,ASCE,1992,188(11):2246-2264.
    [10]普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009[S].北京:中国建筑工业出版社,2009.
    [11] HOGNESTAD E, HANSON N W. Concrete stress distribution in ultimate strength design[J]. Journal of ACI,1955,52(4):455-479.
    [12] KENT D C,PARK R. Flexural members with confined concrete[J]. Journal of the Structural Division,ASCE,1971,97(7):1969-1990.
    [13] PARK R,PAULAY T. Reinforced concrete structures[M]. New York:John Wiley&Sons,1975.
    [14] SARGIN M. Stress-strain relationships for concrete and the analysis of structural concrete sections[J]. Solid Mechanics,1971,6(4):23-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700