用户名: 密码: 验证码:
Physical and toxicological profiles of human IAPP amyloids and plaques
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physical and toxicological profiles of human IAPP amyloids and plaques
  • 作者:Aleksandr ; Kakinen ; Yunxiang ; Sun ; Ibrahim ; Javed ; Ava ; Faridi ; Emily ; H.Pilkington ; Pouya ; Faridi ; Anthony ; W.Purcell ; Ruhong ; Zhou ; Feng ; Ding ; Sijie ; Lin ; Pu ; Chun ; Ke ; Thomas ; P.Davis
  • 英文作者:Aleksandr Kakinen;Yunxiang Sun;Ibrahim Javed;Ava Faridi;Emily H.Pilkington;Pouya Faridi;Anthony W.Purcell;Ruhong Zhou;Feng Ding;Sijie Lin;Pu Chun Ke;Thomas P.Davis;ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University;Department of Physics and Astronomy, Clemson University;College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University;Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University;IBM Thomas J.Watson Research Center;Department of Chemistry, Columbia University;
  • 英文关键词:IAPP;;Amyloid;;Plaque;;Self assembly;;Toxicity
  • 中文刊名:JXTW
  • 英文刊名:科学通报(英文版)
  • 机构:ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University;Department of Physics and Astronomy, Clemson University;College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University;Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University;IBM Thomas J.Watson Research Center;Department of Chemistry, Columbia University;
  • 出版日期:2019-01-15
  • 出版单位:Science Bulletin
  • 年:2019
  • 期:v.64
  • 基金:supported by ARC Project CE140100036 (Davis), NSF CAREER CBET-1553945 (Ding), NIH MIRA R35GM119691 (Ding) and Monash Institute of Pharmaceutical Sciences (Ke);; Purcell is supported by a Principal Research Fellowship from the Australian NHMRC;; Pilkington acknowledges an Australian Government Research Training Program (RTP) Scholarship;; Javed acknowledges Monash International Postgraduate Research Scholarship
  • 语种:英文;
  • 页:JXTW201901007
  • 页数:10
  • CN:01
  • ISSN:10-1298/N
  • 分类号:30-39
摘要
Although much has been learned about the fibrillization kinetics, structure and toxicity of amyloid proteins, the properties of amyloid fibrils beyond the saturation phase are often perceived as chemically and biologically inert, despite evidence suggesting otherwise. To fill this knowledge gap, we examined the physical and biological characteristics of human islet amyloid polypeptide(IAPP) fibrils that were aged up to two months. Not only did aging decrease the toxicity of IAPP fibrils, but the fibrils also sequestered fresh IAPP and suppressed their toxicity in an embryonic zebrafish model. The mechanical properties of IAPP fibrils in different aging stages were probed by atomic force microscopy and sonication, which displayed comparable stiffness but age-dependent fragmentation, followed by self-assembly of such fragments into the largest lamellar amyloid structures reported to date. The dynamic structural and toxicity profiles of amyloid fibrils and plaques suggest that they play active, long-term roles in cell degeneration and may be a therapeutic target for amyloid diseases.
        Although much has been learned about the fibrillization kinetics, structure and toxicity of amyloid proteins, the properties of amyloid fibrils beyond the saturation phase are often perceived as chemically and biologically inert, despite evidence suggesting otherwise. To fill this knowledge gap, we examined the physical and biological characteristics of human islet amyloid polypeptide(IAPP) fibrils that were aged up to two months. Not only did aging decrease the toxicity of IAPP fibrils, but the fibrils also sequestered fresh IAPP and suppressed their toxicity in an embryonic zebrafish model. The mechanical properties of IAPP fibrils in different aging stages were probed by atomic force microscopy and sonication, which displayed comparable stiffness but age-dependent fragmentation, followed by self-assembly of such fragments into the largest lamellar amyloid structures reported to date. The dynamic structural and toxicity profiles of amyloid fibrils and plaques suggest that they play active, long-term roles in cell degeneration and may be a therapeutic target for amyloid diseases.
引文
[1]Knowles TPJ,Vendruscolo M,Dobson CM.The amyloid state and its association with protein misfolding diseases.Nat Rev Mol Cell Biol 2014;15:384-96.
    [2]Eisenberg D,Jucker M.The amyloid state of proteins in human diseases.Cell2012;148:1188-203.
    [3]Sawaya MR,Sambashivan S,Nelson R,et al.Atomic structures of amyloid cross-[bgr]spines reveal varied steric zippers.Nature 2007;447:453-7.
    [4]Ke PC,Sani MA,Ding F,et al.Implications of peptide assemblies in amyloid diseases.Chem Soc Rev 2017;46:6492-531.
    [5]Zraika S,Hull RL,Verchere CB,et al.Toxic oligomers and islet beta cell death:guilty by association or convicted by circumstantial evidence?Diabetologia2010;53:1046-56.
    [6]Haataja L,Gurlo T,Huang CJ,et al.Islet amyloid in type 2 diabetes,and the toxic oligomer hypothesis.Endocr Rev 2008;29:303-16.
    [7]Nedumpully-Govindan P,Kakinen A,Pilkington EH,et al.Stabilizing offpathway oligomers by polyphenol nanoassemblies for iapp aggregation inhibition.Sci Rep 2016;6:19463.
    [8]Hardy J,Higgins G.Alzheimer’s disease:the amyloid cascade hypothesis.Science 1992;256:184-5.
    [9]Krotee P,Rodriguez JA,Sawaya MR,et al.Atomic structures of fibrillar segments of hiapp suggest tightly mated b-sheets are important for cytotoxicity.eLife 2017;6:e19273.
    [10]Pilkington EH,Gurzov EN,Kakinen A,et al.Pancreatic b-cell membrane fluidity and toxicity induced by human islet amyloid polypeptide species.Sci Rep2016;6:21274.
    [11]Meyer-Luehmann M,Coomaraswamy J,Bolmont T,et al.Exogenous induction of cerebral?-amyloidogenesis is governed by agent and host.Science2006;313:1781-4.
    [12]Langer F,Eisele YS,Fritschi SK,et al.Soluble Ab seeds are potent inducers of cerebral b-amyloid deposition.J Neurosci 2011;31:14488-95.
    [13]St?hr J,Watts JC,Mensinger ZL,et al.Purified and synthetic alzheimer’s amyloid beta(ab)prions.Proc Natl Acad Sci USA 2012;109:11025-30.
    [14]Lu JX,Qiang W,Yau WM,et al.Molecular structure of b-amyloid fibrils in alzheimer’s disease brain tissue.Cell 2013;154:1257-68.
    [15]Petkova AT,Leapman RD,Guo Z,et al.Self-propagating,molecular-level polymorphism in alzheimer’s b-amyloid fibrils.Science 2005;307:262-5.
    [16]Tycko R.Physical and structural basis for polymorphism in amyloid fibrils.Protein Sci 2014;23:1528-39.
    [17]Pilkington EH,Xing Y,Wang B,et al.Effects of protein corona on IAPP amyloid aggregation,fibril remodelling,and cytotoxicity.Sci Rep 2017;7:2455.
    [18]Salamekh S,Brender JR,Hyung SJ,et al.A two-site mechanism for the inhibition of iapp amyloidogenesis by zinc.J Mol Biol 2011;410:294-306.
    [19]Brender JR,Hartman K,Nanga RPR,et al.Role of zinc in human islet amyloid polypeptide aggregation.J Am Chem Soc 2010;132:8973-83.
    [20]Bellia F,Grasso G.The role of copper(II)and zinc(II)in the degradation of human and murine iapp by insulin-degrading enzyme.J Mass Spectrom2014;49:274-9.
    [21]Ge X,Kakinen A,Gurzov EN,et al.Zinc-coordination and c-peptide complexation:a potential mechanism for the endogenous inhibition of iapp aggregation.Chem Commun 2017;53:9394-7.
    [22]Cao P,Abedini A,Wang H,et al.Islet amyloid polypeptide toxicity and membrane interactions.Proc Natl Acad Sci USA 2013;110:19279-84.
    [23]Sparr E,Engel MFM,Sakharov DV,et al.Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers.FEBSLett 2004;577:117-20.
    [24]Mathiason CK.Silent prions and covert prion transmission.PLoS Pathog2015;11:e1005249.
    [25]Schindelin J,Arganda-Carreras I,Frise E,et al.Fiji:an open-source platform for biological-image analysis.Nat Methods 2012;9:676.
    [26]Lin S,Zhao Y,Xia T,et al.High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles.ACS Nano2011;5:7284-95.
    [27]Usov I,Mezzenga R.Fiberapp:an open-source software for tracking and analyzing polymers,filaments,biomacromolecules,and fibrous objects.Macromolecules 2015;48:1269-80.
    [28]Luca S,Yau WM,Leapman R,et al.Peptide conformation and supramolecular organization in amylin fibrils:constraints from solid state nmr.Biochemistry2007;46:13505-22.
    [29]Ding F,Yin S,Dokholyan NV.Rapid flexible docking using a stochastic rotamer library of ligands.J Chem Inf Model 2010;50:1623-32.
    [30]Yin S,Ding F,Dokholyan NV.Eris:an automated estimator of protein stability.Nat Methods 2007;4:466.
    [31]Yin S,Ding F,Dokholyan NV.Modeling backbone flexibility improves protein stability estimation.Structure 2007;15:1567-76.
    [32]Ding F,Dokholyan NV.Emergence of protein fold families through rational design.PLOS Comput Biol 2006;2:e85.
    [33]Nedumpully-Govindan P,Jemec DB,Ding F.Csar benchmark of flexible medusadock in affinity prediction and nativelike binding pose selection.JChem Inf Model 2016;56:1042-52.
    [34]Sarroukh R,Cerf E,Derclaye S,et al.Transformation of amyloid b(1-40)oligomers into fibrils is characterized by a major change in secondary structure.Cell Mol Life Sci 2011;68:1429-38.
    [35]Kahle PJ,Neumann M,Ozmen L,et al.Selective insolubility of a-synuclein in human lewy body diseases is recapitulated in a transgenic mouse model.Am JPathol 2001;159:2215-25.
    [36]Lashuel HA,Petre BM,Wall J,et al.Α-synuclein,especially the parkinson’s disease-associated mutants,forms pore-like annular and tubular protofibrils.JMol Biol 2002;322:1089-102.
    [37]Tsigelny IF,Crews L,Desplats P,et al.Mechanisms of hybrid oligomer formation in the pathogenesis of combined alzheimer’s and parkinson’s diseases.PLoS One 2008;3:e3135.
    [38]van Diggelen F,Tepper AWJW,Apetri MM,et al.Α-synuclein oligomers:a study in diversity.Isr J Chem 2017;57:1-26.
    [39]Adamcik J,Lara C,Usov I,et al.Measurement of intrinsic properties of amyloid fibrils by the peak force qnm method.Nanoscale 2012;4:4426-9.
    [40]Ohhashi Y,Kihara M,Naiki H,et al.Ultrasonication-induced amyloid fibril formation of b2-microglobulin.J Biol Chem 2005;280:32843-8.
    [41]Chatani E,Lee YH,Yagi H,et al.Ultrasonication-dependent production and breakdown lead to minimum-sized amyloid fibrils.Proc Natl Acad Sci USA2009;106:11119-24.
    [42]Hu X,Crick SL,Bu G,et al.Amyloid seeds formed by cellular uptake,concentration,and aggregation of the amyloid-beta peptide.Proc Natl Acad Sci USA 2009;106:20324-9.
    [43]Horvath I,Wittung-Stafshede P.Cross-talk between amyloidogenic proteins in type-2 diabetes and parkinson’s disease.Proc Natl Acad Sci USA2016;113:12473-7.
    [44]Xu F,Fu Z,Dass S,et al.Cerebral vascular amyloid seeds drive amyloid bprotein fibril assembly with a distinct anti-parallel structure.Nat Commun2016;7:13527.
    [45]Leinenga G,G?tz J.Scanning ultrasound removes amyloid-b and restores memory in an alzheimer’s disease mouse model.Sci Transl Med2015;7:278ra233.
    [46]Taurozzi J,Hackely V,Wiesner M.A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media.Nanotoxicology2013;7:389-401.
    [47]Kakinen A,Kahru A,Nurmsoo H,et al.Solubility-driven toxicity of CuOnanoparticles to Caco2cells and Escherichia coli:effect of sonication energy and test environment.Toxicol Vitro 2016;36:172-9.
    [48]Kakinen A,Adamcik J,Wang B,et al.Nanoscale inhibition of polymorphic and ambidextrous iapp amyloid aggregation with small molecules.Nano Res2018;11:3636-47.
    [49]Adamcik J,Sánchez-Ferrer A,Ait-Bouziad N,et al.Microtubule-binding R3fragment from tau self-assembles into giant multistranded amyloid ribbons.Angew Chem Int Ed 2016;55:618-22.
    [50]Wiltzius JJW,Sievers SA,Sawaya MR,et al.Atomic structure of the cross-b spine of islet amyloid polypeptide(amylin).Protein Sci 2008;17:1467-74.
    [51]Hardy J,Selkoe DJ.The amyloid hypothesis of alzheimer’s disease:progress and problems on the road to therapeutics.Science 2002;297:353-6.
    [52]Tanzi RE,Bertram L.Twenty years of the alzheimer’s disease amyloid hypothesis:a genetic perspective.Cell 2005;120:545-55.
    [53]Ryu EJ,Harding HP,Angelastro JM,et al.Endoplasmic reticulum stress and the unfolded protein response in cellular models of parkinson’s disease.J Neurosci2002;22:10690-8.
    [54]Nanga RPR,Brender JR,Vivekanandan S,et al.Structure and membrane orientation of iapp in its natively amidated form at physiological ph in a membrane environment.Biochim Biophys Acta,Biomembr 2011;1808:2337-42.
    [55]Pham JD,Chim N,Goulding CW,et al.Structures of oligomers of a peptide from b-amyloid.J Am Chem Soc 2013;135:12460-7.
    [56]Rodriguez JA,Ivanova MI,Sawaya MR,et al.Structure of the toxic core of asynuclein from invisible crystals.Nature 2015;525:486.
    [57]Janson J,Ashley RH,Harrison D,et al.The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles.Diabetes 1999;48:491-8.
    [58]Mirzabekov TA,Lin M,Kagan BL.Pore formation by the cytotoxic islet amyloid peptide amylin.J Biol Chem 1996;271:1988-92.
    [59]Nimmrich V,Grimm C,Draguhn A,et al.Amyloid b oligomers(Ab1-42globulomer)suppress spontaneous synaptic activity by inhibition of p/q-type calcium currents.J Neurosci 2008;28:788-97.
    [60]Shankar GM,Li S,Mehta TH,et al.Amyloid-b protein dimers isolated directly from alzheimer’s brains impair synaptic plasticity and memory.Nat Med2008;14:837.
    [61]Zhang Y,Lu L,Jia J,et al.A lifespan observation of a novel mouse model:In vivo evidence supports ab oligomer hypothesis.PLoS One 2014;9:e85885.
    [62]Pham E,Crews L,Ubhi K,et al.Progressive accumulation of amyloid-b oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins.FEBS J 2010;277:3051-67.
    [63]Giasson BI,Duda JE,Quinn SM,et al.Neuronal a-synucleinopathy with severe movement disorder in mice expressing A53t human a-synuclein.Neuron2002;34:521-33.
    [64]Winner B,Jappelli R,Maji SK,et al.In vivo demonstration that a-synuclein oligomers are toxic.Proc Natl Acad Sci USA 2011;108:4194-9.
    [65]Adamcik J,Mezzenga R.Amyloid polymorphism in the protein folding and aggregation energy landscape.Angew Chem Int Ed 2018;57:8370-82.
    [66]Rulifson IC,Cao P,Miao L,et al.Identification of human islet amyloid polypeptide as a BACE2 substrate.PLoS One 2016;11:e0147254.
    [67]Goldsbury C,Goldie K,Pellaud J,et al.Amyloid fibril formation from full-length and fragments of amylin.J Struct Biol 2000;130:352-62.
    [68]Westermark P,Engstr?m U,Johnson KH,et al.Islet amyloid polypeptide:pinpointing amino acid residues linked to amyloid fibril formation.Proc Natl Acad Sci USA 1990;87:5036-40.
    [69]Pilkington EH,Gustafsson OJR,Xing Y,et al.Profiling the serum protein corona of fibrillar human islet amyloid polypeptide.ACS Nano 2018;12:6066-78.
    [70]Javed I,Yu T,Peng G,et al.In vivo mitigation of amyloidogenesis through functional-pathogenic double protein coronae.Nano Lett 2018;18:5797-804.
    [71]Pilkington EH,Lai M,Ge X,et al.Star polymers reduce islet amyloid polypeptide toxicity via accelerated amyloid aggregation.Biomacromolecules 2017;18:4249-60.
    [72]Yoon G,Lee M,Kim JI,et al.Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.PLoS One 2014;9:e88502.
    [73]Lovell MA,Robertson JD,Teesdale WJ,et al.Copper,iron and zinc in alzheimer’s disease senile plaques.J Neurol Sci 1998;158:47-52.
    [74]Hayne DJ,Lim S,Donnelly PS.Metal complexes designed to bind to amyloid-a for the diagnosis and treatment of alzheimer’s disease.Chem Soc Rev2014;43:6701-15.
    [75]Lee M,Wang T,Makhlynets OV,et al.Zinc-binding structure of a catalytic amyloid from solid-state nmr.Proc Natl Acad Sci USA 2017;114:6191-6.
    [76]Al-Garawi ZS,McIntosh BA,Neill-Hall D,et al.The amyloid architecture provides a scaffold for enzyme-like catalysts.Nanoscale 2017;9:10773-83.
    [77]Geng J,Li M,Wu L,et al.Liberation of copper from amyloid plaques:making a risk factor useful for alzheimer’s disease treatment.J Med Chem2012;55:9146-55.
    [78]Lancet T.Alzheimer’s disease:expedition into the unknown.Lancet2016;388:2713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700