用户名: 密码: 验证码:
基于分层异构模型的机载激光测深波形拟合算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fitting algorithm for airborne laser bathymetric waveforms based on layered heterogeneous model
  • 作者:亓超 ; 宿殿鹏 ; 王贤昆 ; 王明伟 ; 石波 ; 阳凡林
  • 英文作者:Qi Chao;Su Dianpeng;Wang Xiankun;Wang Mingwei;Shi Bo;Yang Fanlin;College of Geomatics, Shandong University of Science and Technology;Key Laboratory of Surveying and Mapping Technology on Island and Reef,National Administration of Surveying, Mapping and Geoinformation;
  • 关键词:机载激光测深 ; 波形拟合 ; 分层异构模型 ; 双指数函数拟合 ; B样条函数拟合
  • 英文关键词:airborne laser bathymetry(ALB);;waveform fitting;;layered heterogeneous model;;double-exponential function fitting;;B-spline function fitting
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:山东科技大学测绘科学与工程学院;海岛(礁)测绘技术国家测绘地理信息局重点实验室;
  • 出版日期:2018-08-28 10:05
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.292
  • 基金:国家重点研发计划项目(2017YFC1405006,2018YFF0212203,2016YFB0501705,2016YFC1401210);; 国家自然科学基金(11704225,41471331);; 山东省重点研发计划项目(2018GHY115002)
  • 语种:中文;
  • 页:HWYJ201902017
  • 页数:8
  • CN:02
  • ISSN:12-1261/TN
  • 分类号:114-121
摘要
波形拟合是机载激光测深数据处理的关键环节,能够为水下地形测量、海底底质分类和水体浑浊度分析等应用领域提供数据基础。针对传统机载激光测深波形拟合算法受噪声干扰严重、对复杂波形形状拟合不准确的问题,提出一种基于分层异构模型的机载激光测深波形拟合算法。针对波形不同组成部分的相应特性,采用异构函数(水面-高斯函数、水体-双指数函数及水底-B样条函数)构建分层异构模型,分别进行拟合,从而实现对各部分波形信号的拟合。采用南海实测数据对所提算法进行了验证,结果表明:该算法拟合波形的平均运行时间T为0.019 4 s,相比于RL(Richardson-Lucy)去卷积算法提高0.328 6 s;平均均方根误差(Root Mean Square Error,RMSE)为6.222 4,相比于双高斯函数拟合算法平均均方根误差RMSE、平均决定系数(Coefficient of determination,R~2)、平均相关系数(Correlation Coefficient,CORR)和相关系数标准差(Standard Deviation,STD)分别提高65.11%、2.83%、1.01%和86.61%,保证了拟合效率和拟合精度。算法具有良好的鲁棒性,能够有效满足机载激光测深科学研究和工程应用的技术需求。
        Waveform fitting is a key point in data processing of airborne laser bathymetry(ALB), which can provide the foundation data for water depth calculation, submarine sediment classification and water turbidity analysis. Traditional waveform fitting algorithms are often disturbed by noise. In addition, the problem of the present algorithms is that the fitting of complex waveform is not accurate. Therefore, a new waveform fitting algorithm for ALB based on layered heterogeneous model was proposed in this paper. According to the corresponding characteristics of different components of waveform, the ALB waveforms were fitted to a combination of three functions: a Gaussian function for the water surface contribution, a B-spline function for the water bottom contribution, and a Double-exponential function to fit the water column contribution. The performance of the proposed fitting model was verified by the measured data from the South China Sea,compared with three classical waveform processing algorithms: the Double-Gaussian, Generalized-Gaussian,and Richardson-Lucy(RL) deconvolution. The experimental results demonstrate that the proposed fitting model performs best in terms of waveform fitting accuracy and efficiency. The average running time T of the proposed fitting model is 0.019 4 s, saving 0.328 6 s than RL deconvolution. The proposed fitting model performs significantly better than the Double-Gaussian algorithm by reducing 65.11%, 2.83%, 1.01% and 86.61% of their average root mean square error(RMSE), average coefficient of determination(R~2), average correlation coefficient(CORR) and average correlation coefficient standard deviation(STD), respectively. The proposed fitting model has the great robustness and can effectively meet the technical requirements of the scientific research and engineering application for ALB.
引文
[1]Baltsavias E P.Airborne laser scanning:existing systems and firms and other resources[J].Isprs Journal of Photogrammetry&Remote Sensing,1999,54(2-3):164-198.
    [2]Glennie C L,Carter W E,Shrestha R L,et al.Geodetic imaging with airborne LiDAR:the earth′s surface revealed[J].Reports on Progress in Physics,2013,76(8):086801.
    [3]Nelson R.How did we get here?An early history of forestry LiDAR[J].Canadian Journal of Remote Sensing,2013,39(sup1):S6-S17.
    [4]Rees W G.Physical Principles of Remote Sensing[M]Cambridge:Cambridge University Press,2001:372.
    [5]Roncat A,Bergauer G,Pfeifer N.B-spline deconvolution for differential target cross-section determination in fullwaveform laser scanning data[J].Isprs Journal of Photogrammetry&Remote Sensing,2011,66(4):418-428.
    [6]Wang C,Li Q,Liu Y,et al.A comparison of waveform processing algorithms for single-wavelength LiDARbathymetry[J].Isprs Journal of Photogrammetry&Remote Sensing,2015,101(101):22-35.
    [7]Roncat A,Wagner W,Melzer T,et al.Echo detection and localization in full-waveform airborne laser scanner data using the averaged square difference function estimator[J].Photogrammetric Journal of Finland,2008,21:62-75.
    [8]Wagner W,Ullrich A,Melzer T,et al.From single-pulse to full-waveform airborne laser scanners:potential and practical challenges[C]//International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences,2014:201-206.
    [9]Chauve A,Mallet C,Bretar F,et al.Processing fullwaveform LiDAR data:modelling raw signals[J].International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences,2007,XXXVI(Part 3/W52):102-107.
    [10]Mallet C,Bretar F.Full-waveform topographic LiDAR:stateof-the-art[J].Isprs Journal of Photogrammetry&Remote Sensing,2009,64(1):1-16.
    [11]Slota M.Decomposition techniques for full-waveform airborne laser scanning data[J].Geomatics and Environmental Engineering,2014,8(1):61-74.
    [12]Wagner W,Ullrich A,Ducic V,et al.Gaussian decomposition and calibration of a novel small-footprint fullwaveform digitising airborne laser scanner[J].Isprs Journal of Photogrammetry&Remote Sensing,2006,60(2):100-112.
    [13]Jutzi B,Stilla U.Range determination with waveform recording laser systems using a wiener filter[J].Isprs Journal of Photogrammetry&Remote Sensing,2006,61(2):95-107.
    [14]Wu J,Aardt J A N V,Asner G P.A comparison of signal deconvolution algorithms based on small-footprint LiDARwaveform simulation[J].IEEE Transactions on Geoscience&Remote Sensing,2011,49(6):2402-2414.
    [15]Wang Dandi,Xu Qing,Xing Shuai,et al.Comparison of signal extraction method for airborne LiDAR bathymetry based on deconvolution[J].Acta Geodaetica et Cartographica Sinica,2018,47(2):161-169.(in Chinese)
    [16]Lin Yushan,Zhang Zhi′an.Waveform analysis and landcover classification using airborne full-waveform LiDAR data[J].Journal of Photogrammetry and Remote Sensing,2014,19(2):75-91.(in Chinese)
    [17]Abdallah H,Baghdadi N,Bailly J S,et al.Wa-LiD:a new LiDAR simulator for waters[J].IEEE Geoscience&Remote Sensing Letters,2012,9(4):744-748.
    [18]Sun Lei,Zhang Zhili,Tan Lilong,et al.Denoising method of dynamic grating Moirésignal based on wavelet threshold[J].Infrared and Laser Engineering,2010,39(3):576-580.(in Chinese)
    [19]Hofton M,Minster J B,Blair J B.Decomposition of laser altimeter waveforms[J].IEEE Transactions on Geoscience&Remote Sensing,2000,38(4):1989-1996.
    [20]Wong H,Antoniou A.Characterization and decomposition of waveforms for Larsen 500 airborne system[J].IEEETransactions on Geoscience&Remote Sensing,1991,29(6):912-921.
    [21]Zhou Hui,Li Song,Wang Liangxun,et al.Influence of noise on range error for satellite laser altimeter[J].Infrared and Laser Engineering,2015,44(8):2256-2261.(in Chinese)
    [22]Li Pengcheng,Xu Qing,Xing Shuai,et al.Full-waveform LiDAR data decomposition method based on global convergent LM[J].Infrared and Laser Engineering,2015,44(8):2262-2267.(in Chinese)
    [23]MoréJ J.The Levenberg-Marquardt algorithm:implementation and theory[J].Lecture Notes in Mathematics,1978,630:105-116.
    [24]Guenther G C.Airborne laser hydrography:system design and performance factors[R].MD:National Ocean Service 1,National Oceanic and Atmospheric Administration,1985.
    [25]Klett J D.Stable analytical inversion solution for processing LiDAR returns[J].Appl Opt,1981,20(2):211-220.
    [26]Billard B,Abbot R H,Penny M F.Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder[J].Applied Optics,1986,25(13):2080.
    [27]Yao Chunhua,Chen Weibiao,Zang Huaguo,et al.Study of the capability of minimum depth using an airborne laser bathymetry[J].Acta Optica Sinica,2004,24(10):1406-1410.(in Chinese)
    0.989 4 0.009 6 1.317 0×10-4
    0 .994 5 0.035 5 1.306 8×10-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700