用户名: 密码: 验证码:
Stress corrosion cracking behaviors of RE-containing ME21 magnesium alloy processed by equal-channel angular pressing
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stress corrosion cracking behaviors of RE-containing ME21 magnesium alloy processed by equal-channel angular pressing
  • 作者:Jinghua ; Jiang ; Qiuyuan ; Xie ; Mingshan ; Qiang ; Aibin ; Ma ; Evans-Kwesi ; Taylor ; Yuhua ; Li ; Dan ; Song ; Jianqing ; Chen
  • 英文作者:Jinghua Jiang;Qiuyuan Xie;Mingshan Qiang;Aibin Ma;Evans-Kwesi Taylor;Yuhua Li;Dan Song;Jianqing Chen;College of Mechanics and Materials, Hohai University;Suqian Institute, Hohai University;
  • 英文关键词:Magnesium alloy;;Stress corrosion cracking;;Equal-channel angular pressing;;Corrosion medium;;Fine-grained;;Rare earths
  • 中文刊名:YXTB
  • 英文刊名:稀土学报(英文版)
  • 机构:College of Mechanics and Materials, Hohai University;Suqian Institute, Hohai University;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Rare Earths
  • 年:2019
  • 期:v.37
  • 基金:supported by the Key Research and Development Project of Jiangsu Province of China(BE2017148);; the Fundamental Research Funds for the Central Universities(HHU2016B10314);; Six Major Talent Peaks Project of Jiangsu Province of China(2014-XCL-023)
  • 语种:英文;
  • 页:YXTB201901012
  • 页数:7
  • CN:01
  • ISSN:11-2788/TF
  • 分类号:94-100
摘要
A commercial as-cast ME21 magnesium alloy containing rare-earth (RE) element was processed by equalchannel angular pressing to obtain fine-grained micro structure. Stress corrosion cracking (SCC) behaviors of the fine-grained samples were studied by slow-strain-rate testing in air, distilled water and Hanks’solution at the strain rate of 1×10~(-6) s~(-1). All samples show a relatively low SCC sensitivity in distilled water but a great SCC tendency in Hanks’ solution. The microscopic observations of the fracture surfaces and the side surfaces reveal obvious active anodic dissolution and hydrogen embrittlement cracks, which indicate the higher SCC susceptibility in Hanks'solution. The fine-grained microstructure with more crystal defects promotes the passivation process of the oxide film and restrains the hydrogen induced cracking of the ME21 magnesium alloy, leading to the higher general corrosion resistance as well as SCC resistance.
        A commercial as-cast ME21 magnesium alloy containing rare-earth(RE) element was processed by equalchannel angular pressing to obtain fine-grained micro structure. Stress corrosion cracking(SCC) behaviors of the fine-grained samples were studied by slow-strain-rate testing in air, distilled water and Hanks' solution at the strain rate of 1×10~(-6) s~(-1). All samples show a relatively low SCC sensitivity in distilled water but a great SCC tendency in Hanks' solution. The microscopic observations of the fracture surfaces and the side surfaces reveal obvious active anodic dissolution and hydrogen embrittlement cracks, which indicate the higher SCC susceptibility in Hanks' solution. The fine-grained microstructure with more crystal defects promotes the passivation process of the oxide film and restrains the hydrogen induced cracking of the ME21 magnesium alloy, leading to the higher general corrosion resistance as well as SCC resistance.
引文
1. Luo AA. Magnesium:Current and potential automotive applications. JOM.2002;54:42.
    2. Mordike BL, Ebert T. Magnesium:properties-applications-potential. Mater Sci Eng A. 2001;302:37.
    3. Xu H, Zhang X, Zhang K, Shi Y, Ren JP. Effect of extrusion on corrosion behavior and corrosion mechanism of Mg-Y alloy. J Rare Earths. 2016;34(2):315.
    4. Song GL, Atrens A. Understanding magnesium corrosion-a framework for improved alloy performance. Adv Eng Mater. 2003;5:837.
    5. Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater.2010;1:11.
    6. Atrens A, Dietzel W, Srinivasan PB, Winzer N, Kannan MB. 9-stress corrosion cracking(SCC)of magnesium alloys. In:Raja VS, Shoji Tetsuo, eds. Stress corrosion cracking:mechanism. Cambridge:Woodhead Publishing; 2011:341.
    7. Atrens A, Winzer N, Dietzel W. Stress corrosion cracking of magnesium alloys.Adv Eng Mater. 2011; 13:11.
    8. Kappes M, Iannuzzi M, Carranza RM. Hydrogen embrittlement of magnesium and magnesium alloys:a review. J Electrochem Soc. 2013;160:168.
    9. Winzer N, Atrens A, Dietzel W, Song GL, Kainer KU. Fractography of stress corrosion cracking of Mg-Al alloys. Metall Mater Trans A. 2008;39:1157.
    10. Cao F, Shi Z, Song GL, Liu M, Dargusch MS, Atrens A. Stress corrosion cracking of several solution heat-treated Mg-X alloys. Corros Sci. 2015;96:121.
    11. Kannan MB, Dietzel W, Blawert C, Riekehr S, Kocak M. Stress corrosion cracking behavior of Nd:YAG laser butt welded AZ31 Mg sheet. Mater Sci Eng A.2007;444:220.
    12. Padekar BS, Raman RKS, Raja VS, Paul L. Stress corrosion cracking of a recent rare-earth containing magnesium alloy, EV31A, and a common Al-containing alloy, AZ91E. Corros Sci. 2013;71:1.
    13. Tomashov ND, Modestova NV. Intercrystalline corrosion and corrosion of metals under Stress. London:Hill; 1963.
    14. Wang Y, Choo H. Influence of texture on Hall-Petch relationships in an Mg alloy. Acta Mater. 2014;81:83.
    15. Ding RG, Chung CW, Chiu YL, Lyon P. Effect of ECAP on micro structure and mechanical properties of ZE41 magnesium alloy. Mater Sci Eng A. 2010;527:3777.
    16. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG. Principle of equalchannel angular pressing for the processing of ultra-fine grained materials.Scr Mater. 1996;35:143.
    17. Jiang JH, Ma AB, Naobumi S, Shen ZX, Song D, Lu FM, et al. Improving the corrosion resistance of RE-containing magnesium alloy ZE41A through ECAP.J Rare Earths. 2009;27:848.
    18. Chen J, Wang JQ, Han EH. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1M Na_2SO_4 solution. Mater Sci Eng A. 2008;488:428.
    19. Winzer N, Atrens A, Song GL, Ghali E, Dietzel W, Kainer KU, et al. A critical review of the stress corrosion cracking(SCC)of magnesium alloys. Adv Eng Mater. 2005;8:659.
    20. McQueen HJ. Initiating nucleation of dynamic recrystallization, primarily in polycrystals. Mater Sci Eng A. 1988:101:149.
    21. Lu ZM, Shi LM, Zhu SJ, Tang ZD, Jiang YZ. Effect of high energy shot peening pressure on the stress-corrosion cracking of the weld joint of 304 austenitic stainless steel. Mater Sci Eng A. 2015;637:170.
    22. Padekar BS, Raja VS, Raman RKS, Lyon P. Stress corrosion cracking behavior of magnesium alloys EV31A and AZ91E. Mater Sci Eng A. 2013;583:169.
    23. Choudhary L, Raman RK. Magnesium alloys as body implants:fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater. 2012;8:916.
    24. Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ,et al. Corrosion resistance of ultra fine-grained Ti. Scr Mater. 2004;51:225.
    25. Chung MK, Choi YS, Kim JG, Kim YM, Lee JC. Effect of the number of ECAP10pass time on the electrochemical properties of 1050 Al alloys. Mater Sci Eng A.2004;366:282.
    26. Schino AD, Kenny JM. Effects of the grain size on the corrosion behaviour of refined AISI 304 stainless steel. J Mater Sci Lett. 2002;21:1631.
    27. Liu WJ, Cao FH, Chang LR, Zhang Z, Zhang JQ, Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy. Coiros Sci. 2009;51:1334.
    28. Aung NN, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros Sci. 2010;52:589.
    29. Song GL, Atrens A, Wu X, Zhang B. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros Sci. 1998;40:1769.
    30. Legrand E, Bouhattate J, Feaugas X, Touzain S, Garmestani H, Khaleel M, et al.Numerical analysis of the influence of scale effects and microstructure on hydrogen diffusion in polycrystalline aggregates. Comp Mater Sci. 2013;71:1.
    31. Atrens A, Winzer N, Song GL, Dietzel W, Blawert C. Stress corrosion cracking and hydrogen diffusion in magnesium. Adv Eng Mater. 2006;8:749.
    32. Srinivasan PB, Blawert C, Dietzel W, Kainer KU. Stress corrosion cracking behaviour of a surface-modified magnesium alloy. Scr Mater. 2008;59:43.
    33. Winzer N, Atrens A, Dietzel W, Song GL, Kainer KU. Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium. Mater Sci Eng A.2008;472:97.
    34. lliopoulos AC, Nikolaidis NS, Aifantis EC. Portevin-Le chatelier effect and Tsallis nonextensive statistics. Phys A. 2015;438:509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700