用户名: 密码: 验证码:
NaCl-KCl熔盐Ta~(5+)在钨电极上的电化学还原机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical reduction mechanism of Ta~(5+) on tungsten electrode in NaCl-KCl molten salt
  • 作者:叶昌美 ; 田亚斌 ; 王昭文 ; 杨少华
  • 英文作者:YE Changmei;TIAN Yabin;WANG Zhaowen;YANG Shaohua;School of Metallurgical and Chemical Engineering,Jiangxi University of Science and Technology;
  • 关键词:NaCl-KCl-K2TaF7熔盐 ; 还原机理 ; 熔盐电解 ; 扩散系数
  • 英文关键词:NaCl-KCl-K2TaF7 molten salt;;reduction mechanism;;molten salt electrolysis;;diffusion coefficient
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:江西理工大学冶金与化学工程学院;
  • 出版日期:2018-12-30
  • 出版单位:功能材料
  • 年:2018
  • 期:v.49;No.423
  • 基金:国家自然科学基金资助项目(51164013;51664022)
  • 语种:中文;
  • 页:GNCL201812026
  • 页数:5
  • CN:12
  • ISSN:50-1099/TH
  • 分类号:172-175+180
摘要
以NaCl-KCl为电解质体系,K_2TaF_7为原料,利用循环伏安法、计时电位法和计时电流法研究温度为1 073K时钽离子在钨电极上的电化学过程。结果表明,在1 073K温度下49%(质量分数)KCl-51%(质量分数)NaCl-5%(质量分数)K_2TaF_7的熔盐体系中,钽离子在钨电极上还原是一步转移5个电子反应,即Ta2++5e-→Ta相对于铂电极析出电位为-1.6V;钽离子在钨电极析出过程中出现成核极化现象,该电化学还原是准可逆反应。并且通过循环伏安和计时电流可判断钽离子在钨电极上的还原过程是受离子扩散步骤控制,1 073K时Ta~(5+)在49%(质量分数)KCl-51%(质量分数)NaCl-5%(质量分数)K_2TaF_7熔盐中的扩散系数D=7.48806×10-5 cm2/s。
        The electrochemical reduction mechanism of Ta~(5+)on the tungsten electrode at 1 073 K was studied through the methods of cyclic voltammetry,chronopotentiometry and chronoamperometry using NaCl-KCl and K_2TaF_7 as molten salt and raw material.The results showed that the electrochemical reduction of Ta~(5+)on the tungsten electrode is a five-electron transition process by one step in 49 wt%KCl-51 wt%NaCl-5 wt%K_2TaF_7 molten salt at 1 073 K.The electrode reaction is Ta2++ 5 e-→ Ta and the reduction potential of Ta~(5+)is at around-1.6 Von a tungsten electrode as compared with a platinum electrode.During depositing process,the nuclear polarization phenomenon is observed.The depositing process of Ta is an quasi-reversible reaction.Cyclic voltammetry and chronoamperometry indicated that the reduction of Ta~(5+)on tungsten electrodes process is controlled by the diffusion step of ions and the diffusion coefficient is calculated to be 7.48806×10-5 cm2/s in49 wt%KCl-51 wt%NaCl-5 wt%K_2TaF_7 molten salt at 1 073 K.
引文
[1] Wang Hui,Zhang Xiaoming,Li Laiping.Industry applications of tantalum and tantalum alloy[J].Equipment Manufacturing Technology,2013(8):115-117(in Chinese).王晖,张小明,李来平.钽及钽合金在工业装备中的应用[J].装备制造技术,2013(8):115-117.
    [2] Tu Chungen.The distribution of tantalum and niobium resources and supply and demand of raw materials[J].Rare Metals Letters,2004,23(12):10-12(in Chinese).涂春根.钽、铌资源的分布与原料的供需状况[J].稀有金属快报,2004,23(12):10-12.
    [3] He Jilin.The development of world tantalum powder technology[J].Chinese Engineering Science,2001,3(12):85-89(in Chinese).何季麟.世界钽粉生产工艺的发展[J].中国工程科学,2001,3(12):85-89.
    [4] Hu Zhongwu,Li Zhongkui,Zhang Tingjie.New developments and applications of tantalum and tantalum alloys[J].Rare Metals and Cemented Carbides,2003(3):34-36(in Chinese).胡忠武,李中奎,张廷杰.钽及钽合金的新发展和应用[J].稀有金属与硬质合金,2003(3):34-36.
    [5] Yu Xiaoming,Tan Lili,Yang Ke.Application and research progress of tantalum as biomedical material[J].Material guide,2012,26(1):79-82(in Chinese).于晓明,谭丽丽,杨柯.钽金属的医学应用研究进展[J].材料导报,2012,26(1):79-82.
    [6] Shi Xianbo,Zhao Lianyu,Yan Wei.Study on strengthening effect of tantalum in Fe-C-Ta alloy[J].J Iron Steel Res Int,2013,25(12):58-62(in Chinese).史显波,赵连玉,严伟.钽在Fe-C-Ta合金中的强化作用[J].钢铁研究学报,2013,25(12):58-62.
    [7] Senderoff S,Mellors G W.Hexavalent fluorides of tantalum and niobium[J].Electroehem Soc,1965,112(6):1028-1029.
    [8] lnman D,Sethi R S,Spencer R.The effects of complex ion formation and ionic adsorption on electrode reactions involving metals and metal ions in fused salts[J].Electroanal Chem,1971,29(1):137-147.
    [9] Taxil P,Mahenc J.The preparation of corrosion-resistant layers by the electrolytic deposition of tantalum on nickel and stainless steel[J].Corr Sci,1981,21(1):31-40.
    [10] Li Guoxun,Barhoum A,Lantelme F.Electrochemical reduction mechanism of tantalum in NaCl-KCl-K2TaF7molten salt[J].The Chinese Journal of Nonferrous Metals,1992,2(3):52-57(in Chinese).李国勋,Barhoum A,Lantelme F.钽在NaCl-KCl-K2TaF7熔体中的电化学还原机理[J].中国有色金属学报,1992,2(3):52-57.
    [11] Idem,Nippon Kagaku Kaishi.Adsorption state of aromatic amines on palladium under hydrogenation and the hydrogenation mechanism[J].The Chemical Society of Japan,1975(2):255.
    [12] Zhang Mingjie,Wang Zhaowen.Principle and application of electrochemistry of fused salts[M].Beijing:Chemical Industry Press,2006:231-238(in Chinese).张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006:231-238.
    [13] Chen Zeng,Zhang Milin,Han Wei,et al.Electrochemical reduction of Zr(Ⅳ)in the LiCl-KCl moltensalt[J].Rare Metal Materials and Engineering,2009,38(3):456-459.
    [14] Bard A J,Faulkner L R.Electrochemical fundamentals and applications(2nd edition)[M].New York:John Wiley and Sons INC,2003:225-227.
    [15] Li Mei,Sun Tingting,Liu Bin,et al.Elec-trochemical behavior of Dy(Ⅲ)and the selective formation of Dy-Ni intermetallic compounds in LiCl-KCl eutectic melts[J].Acta Physico-Chimica Sinica,2015,31(2):309-314.
    [16] Barde A J,Faulkner L R.Electrochemical methods,fundamentals and applications[M].Beijing:Chemical Industry Press,2005:159.
    [17] Paul M S Monck.Fundamentals of electroanalytical chemistry[M].Beijing:Chemical Industry Press,2001:100-101.
    [18] Greef R,Peat R,Pletcher L M,et al.Instrumental methods in electrochemistry[M].London:Ellis Hrwood,1990:316-317.
    [19] McDonald D D.Transient techniques in electrochemistry[M].New York:Plenum Press,1977:365-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700