用户名: 密码: 验证码:
基于电阻率成像的沙地土壤水分监测技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The monitoring technology of soil water content in sandy land based on electrical resistivity tomography
  • 作者:高君亮 ; 马迎宾 ; 罗凤敏 ; 张格 ; 边凯 ; 段娜 ; 刘禹廷
  • 英文作者:GAO Junliang;MA Yingbin;LUO Fengmin;ZHANG Ge;BIAN Kai;DUAN Na;LIU Yuting;Inner Mongolia Dengkou Desert Ecosystem Research Station,State Forestry Administration/Experimental Center of Desert Forestry,Chinese Academy of Forestry;
  • 关键词:土壤水分 ; 土壤电阻率 ; 电阻率成像 ; 乌兰布和沙漠
  • 英文关键词:soil moisture;;soil resistivity;;electrical resistivity tomography;;Ulan Buh desert
  • 中文刊名:GHZH
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:国家林业局内蒙古磴口荒漠生态系统定位研究站/中国林业科学研究院沙漠林业实验中心;
  • 出版日期:2018-11-02
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:v.33;No.245
  • 基金:中央级公益性科研院所基本科研业务费(CAFYBB2016QA016)资助
  • 语种:中文;
  • 页:GHZH201901031
  • 页数:7
  • CN:01
  • ISSN:15-1112/N
  • 分类号:192-198
摘要
土壤水分是影响干旱半干旱区植物生长的主要因素,快速准确、长期连续地监测土壤水分时空动态可为干旱半干旱区植被建设与生态恢复提供科学依据。以乌兰布和沙漠东北部灌木林地土壤为研究对象,应用多电极电阻仪对林地土壤电阻率进行了测量,同步采取土样用烘干法测定了土壤实际含水率,建立了2者之间的相关关系,并对剖面上土壤水分空间特征进行了分析。结果表明:1)土壤含水率(y)与土壤电阻率(x)之间为极显著负相关关系(R2=0. 81,P <0. 01),可用幂函数y=88. 68x-0. 63表示。2)强降水之后,二维剖面上土壤水分整体呈增加趋势。随着雨后时间的延长,1m以上土层的含水率由于受蒸发和植物蒸腾耗水而明显降低,1m以下土层的含水率由于受上层水分入渗有增加趋势,说明连续强降雨(81. 2mm)能对1m以下土层的土壤水分进行有效补给。3)多电极电阻率成像技术在野外能够快速准确,长期定位监测土壤水分含量;且对地表扰动小,实现了非破坏性测量;能够提供尺度较大、分辨率较高的土壤水分二维分布图像及水分入渗过程的图像,是今后中等尺度上监测土壤水分的一种新途径。
        Soil moisture plays a major role in plant growing in the arid and semi-arid area.Rapid,accurate,continuous and long-term monitoring of soil moisture can provide guidance for vegetation construction and ecological restoration in the arid and semi-arid area.Selecting shrub land in northeastern edge of Ulan Buh desert as the research object,the relationship between the moisture content measured by multi-electrode electrical resistivity tomography and the moisture content measured by drying method was established.Spatial features of the soil electrical resistivity and soil moisture were analyzed.The results showed as follows: 1) There was extremely significant negative correlation( R~2= 0.81,P < 0.01) between soil moisture content and soil resistivity and it could be expressed by the power function y = 88.68 x-0.63.2) After heavy precipitation,the soil moisture showed increasing tendency.As the rain continuing,soil moisture of surface layer below 1 m showed a significant decrease from surface layer to 1 m due to the evaporation and transpiration; soil moisture of soil surface below 1 m had a tendency to increase because of infiltration,which indicated that continuous heavy rainfall can effectively supply soil moisture in the soil surface below one meter.3) Multi-electrode resistivity can monitor soil moisture quickly and accurately in the field over a long-time scale.It also can provide large-scale and high-resolution image of soil moisture and water infiltration process.It provides a new method for measurement of soil moisture in a medium-scale in the future.
引文
[1]王经民.黄土丘陵区土壤水分研究[J].农业系统科学与综合研究,2000,16(1):53-56.
    [2]崔国发.固沙林水分平衡与植被建设可适度探讨[J].北京林业大学学报,1998,20(6):89-94.
    [3]梁少民,张希明,曾凡江,等.沙漠腹地乔木状沙拐枣对灌水量的生理生态响应[J].中国沙漠,2010,30(6):1348-1353.
    [4]何芳兰,李治元,赵明,等.民勤绿洲盐碱化退耕地植被自然演替及土壤水分垂直变化研究[J].中国沙漠,2010,30(6):1374-1380.
    [5]Simmons M T,Archer S R,Teague W R,et al. Tree(Prosopis glandulosa)effects on grass growth-An experimental assessment of above and below ground interactions in a temperate savanna[J]. Journal of Arid Environments,2008,72(4):314-325.
    [6]安慧,王俊波,安钰.灌丛密度对毛乌素沙地南缘沙柳生长及土壤水分动态的影响[J].干旱地区农业研究,2012,30(1):197-202.
    [7]付爱红,陈亚宁,李卫红.中国黑河下游荒漠河岸林植物群落水分利用策略研究[J].中国科学(地球科学),2014,44(4):693-705.
    [8]卞莹莹,宋乃平,王兴,等.荒漠草原区不同土地利用方式下土壤水分相对亏缺[J].水土保持学报,2015,29(1):201-206,213.
    [9]张继义,赵哈林,崔建垣,等.科尔沁沙地樟子松人工林土壤水分动态的研究[J].林业科学,2005,41(3):1-6.
    [10]孙建华,刘建军,康博文,等.陕北毛乌素沙地土壤水分时空变异规律研究[J].干旱地区农业研究,2009,27(2):244-247.
    [11]阿拉木萨,周丽芳.科尔沁沙地流动沙丘土壤水分空间变化特征分析[J].土壤,2011,43(3):392-397.
    [12]舒维花,蒋齐,王占军,等.宁夏盐池沙地不同密度人工柠条林土壤水分时空变化分析[J].干旱区资源与环境,2012,26(12):172-176.
    [13]Wu B,Han H Y,He J,et al. Field-specific calibration and evaluation of ECH2O EC-5 Sensor for sandy soils[J]. Soil Science Society of America Journal,2013,78(1):70-78.
    [14]ZHANG J H,WU B,LI Y H,et al. Biological soil crust distribution in Artemisia ordosica communities along a grazing pressure gradient in Mu Us Sandy Land,Northern China[J]. Journal of Arid Land,2013,5(2):172-179.
    [15]冯伟,杨文斌,党宏忠,等.毛乌素沙地流动沙丘土壤水分对降雨的响应[J].中国沙漠,2015,35(2):400-406.
    [16]霍艾迪,康相武,张广军,等.基于MODIS数据的毛乌素沙地土壤水分模型的建立[J].干旱地区农业研究,2010,28(4):19-23.
    [17]张宗海,张建平.科尔沁沙地土壤表层水分遥感反演模型研究[J].水资源与水土工程学报,2011,22(6):127-132,136.
    [18]秦艳芳,陈曦,周可法,等.利用探地雷达观测分析早春融雪前后沙丘表层土壤含水量的时空分布[J].冰川冻土,2012,34(3):690-697.
    [19]秦艳芳,陈曦,周可法,等.古尔班通古特沙漠春季土壤含水量空间格局[J].干旱区地理,2013,36(6):1041-1048.
    [20]王前锋,周可法,孙莉,等.基于探地雷达快速测定土壤含水量试验研究[J].自然资源学报,2013,28(5):881-888.
    [21]French H,Binley A. Snowmelt infiltration:Monitoring temporal and spatial variability using time-lapse electrical resistivity[J]. Journal of Hydrology,2004,297(1/4):174-186.
    [22]Srayeddin I,Doussan C. Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography[J]. Plant and Soil,2009,319(1/2):185-207.
    [23]Besson A,Cousin I,Bourennane H,et al. The spatial and temporal organization of soil water at the field scale as described by electrical resistivity measurements[J]. European Journal of Soil Science,2010,61(1):120-132.
    [24]Oberdorster C,Vanderborght J,Kemna A,et al. Investigating preferential flow processes in a forest soil using time domain reflectometry and electrical resistivity tomography[J]. Vadose Zone Journal,2010,9(2):350-361.
    [25]Nijland. W,Van der Meijde. M,Addink. E. A,et al. Detection of soil moisture and vegetation water abstraction in a Mediterranean natural area using electrical resistivity tomography[J]. Catena,2010,81:209-216.
    [26]Celano G,Palese A M,Ciucci A,et al. Evaluation of soil water content in tilled and cover-cropped olive orchards by the geoelectrical technique[J]. Geoderma,2011,163:163-170.
    [27]朱教君,徐大勇,康宏樟,等.沙质林地土壤阻抗系数测量方法[J].生态学杂志,2005,24(2):222-227.
    [28]郭青林,王旭东,李最雄,等.高密度电阻率法在敦煌莫高窟水汽调查中的初步应用[J].敦煌研究,2008(6):79-82.
    [29]张虎元,王少一,赵天宇,等.利用高密度电阻率法进行盐渍土含水率的测定[J].水文地质工程地质,2012,39(1):95-101.
    [30]段旭,王彦辉,程积民.宁夏固原云雾山天然草坡土壤电阻率和含水率的关系及其空间变异[J].农业工程学报,2012,28(7):130-137.
    [31]段旭,王彦辉,李贤忠,等.云雾山草坡和泾川刺槐林坡面土壤电阻率和含水率的空间差异[J].生态学杂志,2012,31(3):632-639.
    [32]岳宁,董军,李玲,等.基于高密度电阻率成像法的陇中半干旱区土壤含水量监测研究[J].中国生态农业学报,2016,24(10):1417-1427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700