用户名: 密码: 验证码:
压强对GaSb/GaAs量子点形貌各向异性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Reaction Pressure Onmorphology Anisotropy of GaSb/GaAs Quantum Dots
  • 作者:徐德前 ; 徐佳 ; 庄仕伟 ; 李国兴 ; 张宝林
  • 英文作者:XU De-qian;XU Jia-xin;ZHUANG Shi-wei;LI Guo-xing;ZHANG Bao-lin;State Key Laboratory of Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University;
  • 关键词:GaSb/GaAs量子点 ; 各向异性 ; IMF生长模式 ; MOCVD
  • 英文关键词:GaSb/GaAs quantum dots;;anisotropy;;IMF growth mode;;MOCVD
  • 中文刊名:FGXB
  • 英文刊名:Chinese Journal of Luminescence
  • 机构:集成光电子学国家重点实验室吉林大学电子科学与工程学院;
  • 出版日期:2019-01-15
  • 出版单位:发光学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(61574069)资助项目~~
  • 语种:中文;
  • 页:FGXB201901003
  • 页数:6
  • CN:01
  • ISSN:22-1116/O4
  • 分类号:20-25
摘要
采用低压金属有机物化学气相沉积(LP-MOCVD)技术在Ga As(001)衬底上制备Ga Sb量子点,研究了反应室压强对改善Ga Sb/Ga As量子点形貌各向异性的影响。通过Sb表面处理方法,在Ga As衬底上形成低表面能的Sb-Sb浮层,实现以界面失配(IMF)生长模式对Ga Sb量子点诱导生长。用原子力显微镜(AFM)对各样品的量子点形貌进行了表征,结果表明Ga Sb量子点形貌各向异性明显且沿[110]方向拉长。在压强条件为10 k Pa时,IMF生长模式导致不对称岛的长宽比大于3,由于低能量(111)侧面的存在,Ga Sb量子点优先沿[110]方向生长而不是与之垂直的[110]方向。压强降低至4 k Pa时量子点密度增大为8. 3×109cm-2,量子点形貌转变为对称的半球形且长宽比约为1。低的压强降低了吸附原子的扩散激活能从而增大了扩散长度,可以有效改善Ga Sb量子点的各向异性。
        GaSb quantum dots were directly grown on(001)GaAs substrates by metal organic chemical vapor deposition.The effect of reaction chamber pressure on the size anisotropy of GaSb/GaAs quantum dots was analyzed.By the Sb surface treatment,a floating layer of Sb-Sb with low surface energy is formed on a GaAs substrate to achieve growth of GaSb quantum dots with an interfical misfit(IMF)growth mode.The morphologies of GaSb quantum dots were characterized by atomic force microscopy(AFM),and the results showed that the anisotropy of GaSb quantum dots is significant and elongated along the[110]direction.With the reaction pressure of 10 kPa,the aspect ratio of the asymmetric island caused by IMF growth mode is more than 3.Because of the low energy for(111)sidewalls,the GaSb quantum dots preferentially grow up along the[110]direction rather than the[110]direction.When eaction pressure is reduced to 4 k Pa,the density of quantum dots increases to 8.3×10~9cm~(-2).The shape of the quantum dots transforms into a symmetrical hemisphere and the aspect ratio is approximately 1.Because the low pressure reduces the activation energy of the atoms and increases the diffusion length,the anisotropy of GaSb quantum dots can be effectively improved.
引文
[1]NAINANI A,IRISAWA T,YUAN Z,et al.. Optimization of the Al2O3/Ga Sb interface and a high-mobility Ga Sb p MOSFET[J]. IEEE Trans. Elect. Dev.,2011,58(10):3407-3415.
    [2]BURKE R A,WENG X J,KUO M W,et al.. Growth and characterization of unintentionally doped Ga Sb nanowires[J].J. Electron. Mater.,2010,39(4):355-364.
    [3]张仲义,秦素英,魏相飞. In As/Al Sb/Ga Sb量子阱中的双色光吸收[J].发光学报,2017,38(7):930-935.ZHANG Z Y,QIN S Y,WEI X F. Two color optical absorption in In As/Al Sb/Ga Sb quantum well system[J]. Chin. J.Lumin.,2017,38(7):930-935.(in Chinese)
    [4]戎佳敏,邢恩博,赵帅,等. 2μm Ga Sb基低垂直发散角布拉格反射波导激光器优化设计[J].发光学报,2015,36(12):1434-1439.RONG J M,XING E B,ZHAO S,et al.. Modeling of 2μm Ga Sb based bragg reflection waveguide lasers with ultra-low vertical divergence[J]. Chin. J. Lumin.,2015,36(12):1434-1439.(in Chinese)
    [5]TATEBAYASHI J,LIANG B L,BUSSIAN D A,et al.. Formation and optical characteristics of type-II strain-relieved Ga Sb/Ga As quantum dots by using an interfacial misfit growth mode[J]. IEEE Trans. Nanotechnol.,2009,8(2):269-274.
    [6]WANG Y,RUTERANA P,KRET S,et al.. The source of the threading dislocation in Ga Sb/Ga As hetero-structures and their propagation mechanism[J]. Appl. Phys. Lett.,2013,102(5):052102-1-5.
    [7]GUTIRREZ M,ARAUJO D,JURCZAK P,et al.. Solid solution strengthening in Ga Sb/Ga As:a mode to reduce the TD density through Be-doping[J]. Appl. Phys. Lett.,2017,110(9):131911.
    [8]WANG Y,RUTERANA P,CHEN J,et al.. Antimony-mediated control of misfit dislocations and strain at the highly lattice mismatched Ga Sb/Ga As interface[J]. ACS Appl. Mater. Interfaces,2013,5(19):9760-9764.
    [9]TAN K H,JIA B W,LOKE W K,et al.. Formation of interfacial misfit dislocation in Ga Sb/Ga As heteroepitaxy via anion exchange process[J]. J. Cryst. Growth,2015,427:80-86.
    [10]KIM J H,SEONG T Y,MASON N J,et al.. Morphology and defect structures of Ga Sb islands on Ga As grown by metalorganic vapor phase epitaxy[J]. J. Electron. Mater.,1998,27(5):466-471.
    [11]QIU Y X,LI M C,WANG Y T,et al.. Investigation of Ga Sb epilayer grown on vicinal Ga As(001)substrate by high resolution X-ray diffraction[J]. Phys. Scr.,2007,129:27-30.
    [12]HSIAO C J,HA M T H,HSU C Y,et al.. Growth of ultrathin Ga Sb layer on Ga As using metal-organic chemical vapor deposition with Sb interfacial treatment[J]. Appl. Phys. Express,2016,9(9):095502-1-4.
    [13]HSIAO C J,HA M T H,LIU C K,et al.. Performance improvement of highly mismatched Ga Sb layers on Ga As by interfacial-treatment-assisted chemical vapor deposition[J]. J. Mater. Sci. Mater. Electron.,2017,28(1):846-855.
    [14]EL KAZZI S,DESPLANQUE L,COINON C,et al.. Compliance at the Ga Sb/Ga P Interface by misfit dislocations array[J]. Adv. Mater. Res.,2011,324:85-88.
    [15]BALAKRISHNAN G,TATEBAYASHI J,KHOSHAKHLAGH A,et al..Ⅲ/Ⅴratio based selectivity between strained stranski-krastanov and strain-free Ga Sb quantum dots on Ga As[J]. Appl. Phys. Lett.,2006,89(16):161104-1-3.
    [16]JIANG C,KAWAZU T,KOBAYASHI S,et al.. Molecular beam epitaxial growth of very large lateral anisotropic Ga Sb/Ga As quantum dots[J]. J. Cryst. Growth,2007,301-302:828-832.
    [17]TIMM R. Formation,Atomic Structure,and Electronic Properties of Ga Sb Quantum Dots in Ga As[D]. Berlin:Technische Universitt Berlin,2007.
    [18]EL KAZZI S,DESPLANQUE L,WALLART X,et al.. Interplay between Sb flux and growth temperature during the formation of Ga Sb islands on Ga P[J]. J. Appl. Phys.,2012,111(12):123506-1-5.
    [19]LI G D,JIANG C,ZHU Q S,et al.. Anisotropic transport of two-dimensional electron gas modulated by embedded elongated Ga Sb/Ga As quantum dots[J]. Appl. Phys. Lett.,2011,98(3):032103-1-3.
    [20]KAWAZU T,NODA T,MANO T,et al.. Effects of Sb/As interdiffusion on optical anisotropy of Ga Sb quantum dots in Ga As grown by droplet epitaxy[J]. Jpn. J. Appl. Phys.,2012,51(11R):115201.
    [21]BRACHT H,NICOLS S P,WALUKIEWICZ W,et al.. Large disparity between gallium and antimony self-diffusion in gallium antimonide[J]. Nature,2000,408(6808):69-72.
    [22]陆大成,段树坤.金属有机化合物气相外延基础及应用[M].北京:科学出版社,2009.LU D C,DUAN S K. Organometallic Vapor-phase Epitaxy:Basis and Application[M]. Beijing:Science Press,2009.(in Chinese)
    [23]STRINGFELLOW G B. Organometallic Vapor-phase Epitaxy[M]. 2nd ed. San Diego:Academic Press,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700