用户名: 密码: 验证码:
驯化复合微生物菌群处理废弃钻井泥浆活性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Treatment of waste drilling mud by domesticated complex microbial flora
  • 作者:高小龙 ; 常允康 ; 侍浏洋 ; 李晓光 ; 赵建芳 ; 沙蓓蓓 ; 黄志勇 ; 王兴彪
  • 英文作者:Xiaolong Gao;Yunkang Chang;Liuyang Shi;Xiaoguang Li;Jianfang Zhao;Beibei Sha;Zhiyong Huang;Xingbiao Wang;Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences;Engineering Technology Research Center for High Salt Wastewater Treatment (chips);
  • 关键词:钻井泥浆 ; 石油降解 ; 活性菌群 ; 群落结构
  • 英文关键词:drilling mud;;crude oil degradation;;active microbial community;;community structure
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:中国科学院天津工业生物技术研究所工业生物系统与过程工程重点实验室;滨州市高盐废水处理工程技术研究中心(筹);
  • 出版日期:2018-07-17 10:35
  • 出版单位:微生物学报
  • 年:2019
  • 期:v.59;No.345
  • 基金:天津市科学技术委员会院市合作生态环境治理重大专项(16YFXTSF00560);; 中国科学院战略生物资源服务网络计划(ZSYS-008);; 南开大学分子微生物学与技术教育部重点实验室开放课题~~
  • 语种:中文;
  • 页:WSXB201901015
  • 页数:11
  • CN:01
  • ISSN:11-1995/Q
  • 分类号:140-150
摘要
【背景】油田废弃钻井泥浆含油量高,污染物复杂,环境危害严重,现有技术无法满足日益发展的石油开采行业在废弃钻井泥浆处理方面的需求。生物法处理废弃钻井泥浆,工艺简单,成本低,但也存在局限,包括广谱性差、处理周期长、原油降解率低、泥浆性质波动冲击工艺稳定性等。【目的】构建一种高活性和高环境耐受能力的微生物菌群,分析遗传稳定性和综合性能,提高废弃钻井泥浆处理技术水平。【方法】通过定向富集、诱导驯化的方法,提高活性群落对石油烃乳化降解效率,降低共代谢底物反馈抑制和群体感应系统敏感度,分析群落结构和活性成员的种群类别,分析乳化降解石油烃的活性对应关系。【结果】从含油量超过12g/kg、芳烃-胶质沥青含量超过80%、含盐量超过8g/kg的钻井废弃泥浆中富集得到1个活性微生物菌群,主要成员包括假单胞菌属(Pseudomonas)、根瘤菌属(Rhizobium)、红细菌属(Rhodobacter)和嗜碱还原硫素杆菌(Dethiobacter alkaliphilus),比例分别达27.44%、20.73%、8.54%和7.93%。在超过22代的连续驯化过程中,假单胞菌(Pseudomonas)、类希瓦氏菌(Alishewanella)和盐单胞菌(Halomonas)数量达92.72%,菌群结构和活性趋于稳定。处理钻井废弃泥浆5 d,土壤含油率由处理前的12403 mg/kg降低到处理后的42 mg/kg,综合脱油效率99.67%,石油烃降解率68.9%。分析微生物群落作用前后石油饱和土壤中的石油含量变化,原始含油量261 g/kg,处理后含油量305 mg/kg,脱油率99.88%。【结论】菌群驯化后活性稳定,耐受高盐环境能力强,在钻井废弃泥浆、含油土壤及油泥污染物处理方面具有很强的工业应用潜力。
        [Background] The waste drilling mud in the oil field has high oil content, complex pollutant and serious environmental hazards, and existing technologies cannot meet the requirements of the increasingly developed petroleum exploitation industry in the treatment of waste drilling mud. Biological treatment of waste drilling mud has the advantages of simple process and low cost, but it also has some limitations, including poor broad-spectrum, long processing cycle, low petroleum degradation rate and the fluctuation of sludge properties affects the active stability. [Objective] To improve the biological treatment of waste drilling mud, a microbial community with high activity and high environmental tolerance was constructed, and the comprehensive performance and genetic stability was analyzed. [Methods] Through directional enrichment, induction and acclimation methods, the efficiency of petroleum hydrocarbons emulsification and degradation was expected to be improved, and the feedback inhibition of co-metabolic substrate and quorum sensing system sensitivity were expected to be reduced. We analyzed the structure and the active members' types of the microbial community, and studied the corresponding relationship with emulsification-degradation of petroleum hydrocarbons. [Results] An active microbial community was enriched from drilling waste mud containing more than 12 g/kg oil, more than 80% aromatics-colliod-asphalt and more than 8 g/kg salt. The main members include Pseudomonas, Rhizobia, Rhodobacter and Dethiobacter alkaliphilus, with the ratio of 27.44%, 20.73%, 8.54% and 7.93%, respectively. During the continuous acclimation of more than 22 generations, the quantity of Pseudomonas, Alishewanella and Halomonas was accounted for more than 92.72%, the structure and activity of the microbial community was stable. When the waste drilling mud was treated for 5 days by the active community, the oil content of soil decreased from 12403 mg/kg to 42 mg/kg, the comprehensive oil removal efficiency was 99.67%, and the petroleum hydrocarbon degradation rate was 68.9%. The content in crude oil saturated soil was analyzed before and after microbial community action, the original oil content was 261 g/kg, and the oil content after treatment was 305 mg/kg, deoiling rate was 99.88%. [Conclusion] After acclimation, the microbial community has stable activity, strong tolerance to high salt environment, the active microbial community has strong industrial application potential in drilling waste mud, oily soil and sludge pollutant treatment.
引文
[1]Peng Y,Yang X,Sun CJ.The overview of the way to recycle municipal domestic refuse.Environmental Science and Management,2007,32(4):102-104.(in Chinese)彭园,杨旭,孙长建.废弃泥浆无害化处理方法研究.环境科学与管理,2007,32(4):102-104.
    [2]Zeng YB,Huang F,Liu SH,Jia JP,Li X.Development of biological treatment technology for drilling wastes.Advances in Fine Petrochemicals,2008,9(2):42-45.(in Chinese)曾玉彬,黄锋,刘世海,贾建平,李霞.钻井废弃物的生物处理技术研究进展.精细石油化工进展,2008,9(2):42-45.
    [3]Zhao XH,Wang FC.Research development of waste drilling fluids disposal.Drilling Fluid&Completion Fluid,2004,21(2):43-48.(in Chinese)赵雄虎,王风春.废弃钻井液处理研究进展.钻井液与完井液,2004,21(2):43-48.
    [4]Wang XC,Hu YX,Zheng SJ,Qiang TT.Application status of waste drilling fluid treatment technology at home and abroad.Journal of Shanxi University of Science&Technology,2010,28(6):169-174.(in Chinese)王学川,胡艳鑫,郑书杰,强涛涛.国内外废弃钻井液处理技术研究现状.陕西科技大学学报,2010,28(6):169-174.
    [5]?urek R,Jamrozik AG,Gonet A.Toxicity evaluation of spent drilling mud and drilling waste.AGH Drilling,Oil,Gas,2017,34(1):243-257.
    [6]Yi SJ,Kang Q.The toxicity,hazardousness and disposal method of drilling waste.Environmental Science and Technology,2001,24(S1):48-50.(in Chinese)易绍金,康群.钻井废弃物的毒性、危害及其处理处置方法.环境科学与技术,2001,24(S1):48-50.
    [7]Jones FV,Rushing JH,Churan MA.The chronic toxicity of mineral oil-wet and synthetic liquid-wet cuttings on an estaurine fish,Fundulus grandis//SPE Health,Safety and Environment in Oil and Gas Exploration and Production Conference.The Hague,Netherlands:Society of Petroleum Engineers,1991.
    [8]Wang SQ,Wang LH,Zeng XH,Zhao JF.Analysis of relevant standards and regulations for treatment of waste drilling mud.Technology Supervision in Petroleum Industry,2016,32(7):39-41.(in Chinese)王树强,王立辉,曾晓辉,赵俊峰.废弃钻井泥浆处理相关标准及法规浅析.石油工业技术监督,2016,32(7):39-41.
    [9]Ji GD,Yang YS,Zhou Q,Sun T,Ni JR.Phytodegradation of extra heavy oil-based drill cuttings using mature reed wetland:an in situ pilot study.Environment International,2004,30(4):509-517.
    [10]Xu X.Current situation of drilling waste biodegradation technology and its development trend.Environmental Engineering,2010,28(S1):205-208,199.(in Chinese)徐旭.钻井废物生物降解技术现状及发展趋势.环境工程,2010,28(S1):205-208,199.
    [11]Leonard SA,Stegemann JA.Stabilization/solidification of petroleum drill cuttings:leaching studies.Journal of Hazardous Materials,2010,174(1/3):484-491.
    [12]Hu ZB,Wang QC,Chen TT.Treatment and use of waste drilling fluid with existing solids control equipment.Drilling Fluid&Completion Fluid,2017,34(1):92-95.(in Chinese)胡祖彪,王清臣,陈廷廷.基于现有固控设备的废钻井液处理及利用技术.钻井液与完井液,2017,34(1):92-95.
    [13]Ministry of Agriculture of the PRC.NY/T 1377-2007Determination of pH in soil.Beijing:China Agriculture Press,2007.(in Chinese)中华人民共和国农业部.NY/T 1377-2007土壤中pH值的测定.北京:中国农业出版社,2007.
    [14]Ministry of Agriculture of the PRC.NY/T 1121.6-2006 Soil testing part 6:method for determination of soil organic matter.Beijing:China Agriculture Press,2006.(in Chinese)中华人民共和国农业部.NY/T 1121.6-2006土壤检测第6部分:土壤有机质的测定.北京:中国农业出版社,2006.
    [15]Cai Z,Zhou QX,Peng SW,Li KN.Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L.with strong endurance.Journal of Hazardous Materials,2010,183(1/3):731-737.
    [16]Faraj MAM,Tatjana SK,Ksenija S,Sonja IP,Hans PN,Peter NH,Branimir J.GC-MS vs.GC-MS-MS analysis of pentacyclic terpanes in crude oils from Libya and Serbia-a comparison of two methods.Journal of the Serbian Chemical Society,2017,82(11):1315-1331,doi:10.2298/JSC170419075A.
    [17]National Development and Reform Commission.SY/T5119-2008 Analysis method for fractions of rock extract and crude oil.Beijing:Petroleum Industry Press,2008.(in Chinese)中华人民共和国国家发展和改革委员会.SY/T 5119-2008岩石中可溶有机物及原油族组分分析.北京:石油工业出版社,2008.
    [18]Zeng JM,Zeng ZS,Yuan HJ,Tan ZY.Advances in culture methods of oligotrophic microbes.Current Biotechnology,2012,2(3):165-170.(in Chinese)曾建民,曾振顺,原红娟,谭志远.难培养微生物培养方法的研究进展.生物技术进展,2012,2(3):165-170.
    [19]Zhao J,Quan CS.Progress in the study of microbial signal molecule degradation enzymes.China Biotechnology,2012,32(12):110-116.(in Chinese)赵晶,权春善.微生物信号分子降解酶研究进展.中国生物工程杂志,2012,32(12):110-116.
    [20]Liu WQ,Mao ZC,Yang YH,Xie BY.Analysis of soil bacterial diversity by using the 16S rRNA gene library.Acta Microbiologica Sinica,2008,48(10):1344-1350.(in Chinese)刘玮琦,茆振川,杨宇红,谢丙炎.应用16S rRNA基因文库技术分析土壤细菌群落的多样性.微生物学报,2008,48(10):1344-1350.
    [21]Zhang J,Li Z,Zhang Y,Yuan QY.One-step preparation and transformation condition optimization of Escherichia coli BL21(DE3)competent cell.Jiangsu Agricultural Science,2016,44(12):529-532.(in Chinese)张迹,李智,张宇,袁巧云.一步法制备大肠杆菌BL21(DE3)菌株感受态细胞及转化条件优化.江苏农业科学,2016,44(12):529-532.
    [22]Aoshima H,Hirase T,Tada T,Ichimura N,Yamaguchi H,Taguchi M,Myoenzono T.Improvement of heavy oil degradation by Rhodoccocus erythropolis C2.Journal of Environmental Biotechnology,2006,5(2):107-109.
    [23]Shi JC,Jia LY.Primary study on microbiological degradation of heavy oil.Environmental Protection of Chemical Industry,2005,25(6):427-430.(in Chinese)史继诚,贾凌云.微生物降解重油的初步研究.化工环保,2005,25(6):427-430.
    [24]Reddy MV,Devi MP,Chandrasekhar K,Goud RK,Mohan SV.Aerobic remediation of petroleum sludge through soil supplementation:microbial community analysis.Journal of Hazardous Materials,2011,197:80-87.
    [25]Morris JM,Jin S,Crimi B,Pruden A.Microbial fuel cell in enhancing anaerobic biodegradation of diesel.Chemical Engineering Journal,2009,146(2):161-167.
    [26]Jacques RJS,Santos EC,Bento FM,Peralba MCR,Selbach PA,SáELS,Camargo FAO.Anthracene biodegradation by Pseudomonas sp.isolated from a petrochemical sludge landfarming site.International Biodeterioration&Biodegradation,2005,56(3):143-150.
    [27]Sorkhoh NA,Al-Awadhi H,Al-Mailem DM,Kansour MK,Khanafer M,Radwan SS.Agarolytic bacteria with hydrocarbon-utilization potential in fouling material from the Arabian Gulf coast.International Biodeterioration&Biodegradation,2010,64(7):554-559.
    [28]Shao ZZ,Cui ZS,Dong CM,Lai QL,Chen L.Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge.Deep Sea Research Part I:Oceanographic Research Papers,2010,57(5):724-730.
    [29]Han Z.Pilot test of reusing waste drilling mud for road construction.Journal of Shengli College China University of Petroleum,2014,28(1):30-32,35.(in Chinese)韩卓.钻井废弃泥浆筑路再利用先导试验.中国石油大学胜利学院学报,2014,28(1):30-32,35.
    [30]Wang K,Su YP,Huang K,Zhang XJ,Zhang FW.Research on treatment technology of waste drilling mud of oilfield.Industrial Water&Wastewater,2016,47(5):80-83.(in Chinese)王凯,苏艳佩,黄凯,张雪娇,张发文.油田钻井废弃泥浆处理工艺研究.工业用水与废水,2016,47(5):80-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700