用户名: 密码: 验证码:
内蒙古克什克腾旗长岭子铅锌矿床流体包裹体及矿床成因类型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of fluid inclusions and ore genetic type of the Changlingzi deposit,Keshiketeng County,Inner Mongolia
  • 作者:许强伟 ; 王玭 ; 钟军 ; 王成明 ; 郑义 ; 方京
  • 英文作者:XU Qiangwei;WANG Pin;ZHONG Jun;WANG Chengming;ZHENG Yi;FANG Jing;School of Earth and Space Sciences,Peking University;Key Laboratory of Marginal Sea Geology,Chinese Academy of Sciences;South China Sea Institute of Oceanology,Chinese Academy of Sciences;Beijing Research Institute of Uranium Geology;School of Earth Sciences and Engineering,Sun Yat-sen University;Institute of Deep-sea Science and Engineering,Chinese Academy of Sciences;
  • 关键词:流体包裹体 ; 长岭子铅锌矿床 ; 夕卡岩型矿床 ; 大兴安岭
  • 英文关键词:fluid inclusions;;Changlingzi Pb-Zn deposit;;skarn deposit;;Great Hinggan Range
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:北京大学地球与空间科学学院;中国科学院边缘海与大洋地质重点实验室中国科学院南海海洋研究所;核工业北京地质研究院;中山大学地球科学与工程学院;中国科学院深海科学与工程研究所;
  • 出版日期:2018-08-30 13:37
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.133
  • 基金:国家自然科学基金青年基金项目(4160206);; 克什克腾旗金达矿业开发有限责任公司项目(20150008)
  • 语种:中文;
  • 页:DXQY201805012
  • 页数:16
  • CN:05
  • ISSN:11-3370/P
  • 分类号:157-172
摘要
内蒙古克什克腾旗长岭子铅锌矿床是大兴安岭南段新发现的一个矿床,矿体赋存于下二叠统大石寨组海相火山岩建造中,矿体受夕卡岩控制。根据手标本中脉体穿插关系和岩石薄片中观察的矿物共生组合特征,文中将长岭子铅锌矿的成矿过程划分为4个阶段:干夕卡岩阶段、湿夕卡岩-磁铁矿阶段、石英-硫化物阶段和石英-碳酸盐阶段,分别以石榴子石±透辉石±硅灰石、石英+绿帘石+电气石+磁铁矿、石英+黄铁矿±磁黄铁矿±黄铜矿±方铅矿±闪锌矿和石英±方解石的矿物组合为标志。长岭子矿床主要发育水溶液包裹体(W型)和含子矿物多相包裹体(S型),前者可进一步划分为富液相(WL型)和富气相(WV型)两个亚类。干夕卡岩阶段辉石中主要发育S型和WL型包裹体,湿夕卡岩-磁铁矿阶段绿帘石和石英中主要发育WL型、WV型和S型包裹体,石英-硫化物阶段石英中可见所有类型的包裹体,石英-碳酸盐阶段的石英±方解石脉中仅见WL型包裹体。干夕卡岩阶段辉石中流体包裹体的均一温度和盐度分别为387~524℃和10.7%~52%(NaCleqv.);湿夕卡岩-磁铁矿阶段包裹体均一温度为312~533℃,盐度为11.3%~60%(NaCleqv.);石英-硫化物阶段包裹体均一温度介于182~329℃,盐度介于4.7%~38%(NaCleqv.);石英-碳酸盐阶段包裹体均一温度为124~199℃,盐度介于3.1%~22.4%(NaCleqv.)。上述矿床地质和成矿流体特征表明长岭子铅锌矿为夕卡岩型矿床。成矿流体经历了自夕卡岩阶段高温、高盐度岩浆热液向石英-碳酸盐阶段低温、低盐度大气降水热液的转变。石英-硫化物阶段发育沸腾包裹体组合,表明成矿流体发生了沸腾作用,这可能是成矿物质沉淀的主要机制。
        The Changlingzi Pb-Zn deposit in Keshiketeng County,Inner Mongolia,China,was recently discovered in the southern Great Hinggan Range.Ore bodies occur as veins in the Early Permian Dashizhai Formation with skarn alteration.The Early Permian Dashizhai Formation consists of marine intermediateacid volcanic rocks and spilites interbeded with sandstones and slates.Based on the mineral assemblages and crosscutting relations of vein lets,the mineralization process can be divided into four stages(from early to late):the dry skarn stage,wet skarn-magnetite stage,quartz-sulfide stage and quartz-carbonate stage characterized by the mineral assemblages of garnet±diopside±wollastonite,quartz+epidote+tourmaline+magnetite,quartz+pyrite±pyrrhotite±chalcopyrite±galena±sphalerite,and quartz±calcite,respectively.Two types of fluid inclusions(FIs),including aqueous(W-type)and daughter mineral-bearing polyphase(S-type)fluid inclusions,occur in the Changlingzi deposit.And the W-type can be subdivided into the liquidrich(WL-type)and vapor-rich(WV-type)types.The diopside grains contain S-and WL-type FIs.The epidote and quartz grains of the wet skarn-magnetite stage contain WL-,WV-and S-type FIs.Quartzes of the quartz-sulfide stage include all types of FIs.Only WL-type FIs are present in the quartz-carbonate stage quartz±calcite veins.FIs in the diopside were homogenized at 387-524℃,with salinities ranging from 10.7 to 52 wt.%(NaCleqv.).FIs of the wet skarn-magnetite,quartz-sulfides and quartz-carbonate stages attained homogenization temperatures of 312-533℃,182-329℃,124-199℃ and salinities of 11.3-60,4.7-38 and 3.1-22.4 wt.%(NaCleqv.),respectively.The above characteristics of ore geology and ore-forming fluids indicated that the Changlingzi Pb-Zn deposit is a typical skarn-type deposit.The ore-forming fluids experienced an evolutionary transformation from the high-temperature,high-salinity magmatic fluids of the skarn stage to the low-temperature,low-salinity meteoric waters of the quartz-carbonate stage.The occurrence of ebullition in the quartz-sulfide stage was recognized as an important mechanism for ore-metals precipitation.
引文
[1]CHEN Y J,LI C,ZHANG J,et al.Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type[J].Science China:Earth Sciences,2000,43(1):82-94.
    [2]CHEN Y J,WANG P,LI N,et al.The collision-type porphyry Mo deposits in Dabie Shan,China[J].Ore Geology Reviews,2016,81(2):405-430.
    [3]SENGOR A M C,NATAL’IN B A.Paleotectonics of Asia:fragments of synthesis[M]∥YIN A,HARRISON T M.The tectonic evolution of Asia.Cambridge:Cambridge University Press,1996:486-640.
    [4]肖文交,舒良树,高俊,等.中亚造山带大陆动力学边程与成矿作用[J].新疆地质,2008,26(1):4-8.
    [5]LI N,CHEN Y J,PIRAJNO F,et al.LA-ICP-MS zircon U-Pb dating,trace element and Hf isotope geochemistry of the Heyu granite batholith,eastern Qinling,central China:implications for Mesozoic tectono-magmatic evolution[J].Lithos,2012,142/143:34-47.
    [6]陈衍景,张成,李诺,等.中国东北钼矿床地质[J].吉林大学学报(地球科学版),2012,42(5):1123-1168.
    [7]CHEN Y J,ZHANG C,WANG P,et al.The Mo deposits of Northeast China:apowerful indicator of tectonic settings and associated evolutionary trends[J].Ore Geology Reviews,2016,81(2):602-640.
    [8]芮宗瑶.华北陆块北缘及邻区有色金属矿床地质[M].北京:地质出版社,1994.
    [9]邵积东,王守光,赵文涛,等.大兴安岭地区成矿地质特征及找矿前景分析[J].地质与资源,2007,16(4):252-256.
    [10]陈志广,张连昌,吴华英,等.内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景[J].岩石学报,2008,24(4):879-889.
    [11]赵一鸣.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M].北京:地震出版社,1997.
    [12]王莉娟,岛崎英彦,王京彬,等.黄岗梁夕卡岩型铁锡矿床成矿流体及成矿作用[J].中国科学:D辑,2001,31(7):553-562.
    [13]王莉娟,王京彬,王玉往,等.内蒙古东部与夕卡岩型矿床有关的花岗岩氧同位素特征:以浩布高矿床为例[J].地质论评,2004,50(5):513-513.
    [14]王莉娟,王京彬,王玉往,等.内蒙古大井锡铜多金属矿床流体成矿机理及外围找矿预测[J].岩石学报,2015,31(4):991-1001.
    [15]刘建明,张锐,张庆洲.大兴安岭地区的区域成矿特征[J].地学前缘,2004,11(1):269-277.
    [16]郭利军,谢玉玲,侯增谦,等.内蒙古拜仁达坝银多金属矿矿床地质及成矿流体特征[J].岩石矿物学杂志,2009,28(1):26-36.
    [17]刘家军,邢永亮,王建平,等.内蒙古拜仁达坝超大型AgPb-Zn多金属矿床中针硫锑铅矿的发现与成因意义[J].吉林大学学报(地球科学版),2010,40(3):565-572.
    [18]周振华,刘宏伟,常帼雄,等.内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义[J].岩石矿物学杂志,2011,30(1):97-112.
    [19]江思宏,聂凤军,白大明,等.内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据[J].矿床地质,2011,30(5):787-798.
    [20]舒启海,赖勇,魏良民,等.大兴安岭南段白音诺尔铅锌矿床流体包裹体研究[J].岩石学报,2011,27(5):1467-1482.
    [21]翟德高,刘家军,杨永强,等.内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景[J].岩石矿物学杂志,2012,31(4):513-523.
    [22]欧阳荷根,毛景文,武欣丽.内蒙古拜仁达坝和维拉斯托矿床地球化学特征对比研究[J].矿床地质,2012(增刊1):329-330.
    [23]欧阳荷根,李睿华,周振华.内蒙古双尖子山银多金属矿床侏罗纪成矿的年代学证据及其找矿意义[J].地质学报,2016,90(8):1835-1845.
    [24]匡永生,郑广瑞,卢民杰,等.内蒙古赤峰市双尖子山银多金属矿床的基本特征[J].矿床地质,2014,33(4):847-856.
    [25]钟日晨,杨永飞,石英霞,等.内蒙古拜仁达坝银多金属矿区矿石矿物特征及矿床成因[J].中国地质,2008,35(6):1274-1285.
    [26]梅微,吕新彪,唐然坤,等.大兴安岭南段西坡拜仁达坝-维拉斯托矿床成矿流体特征及其演化[J].地球科学,2015(1):145-162.
    [27]翟德高,刘家军,李俊明,等.内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义[J].矿床地质,2016,35(5):1011-1022.
    [28]曾庆栋,刘建明,禇少雄,等.大兴安岭南段多金属矿成矿作用和找矿潜力[J].吉林大学学报(地球科学版),2016,46(4):1100-1123.
    [29]吕志成,段国正,刘丛强,等.大兴安岭地区银矿床类型、成矿系列及成矿地球化学特征[J].矿物岩石地球化学通报,2000,19(4):305-309.
    [30]王京彬,王玉往,王莉娟.大兴安岭中南段铜矿成矿背景及找矿潜力[J].地质与勘探,2000,36(5):1-4.
    [31]邵积东,陶继雄,李四娃,等.大兴安岭成矿带找矿工作新进展[J].地质通报,2009,28(7):955-962.
    [32]薛怀民,郭利军,侯增谦,等.大兴安岭西南坡成矿带晚古生代中期未变质岩浆岩的SHRIMP锆石U-Pb年代学[J].岩石矿物学杂志,2010,29(6):811-823.
    [33]张梅,翟裕生,沈存利,等.大兴安岭中南段铜多金属矿床成矿系统[J].现代地质,2011,25(5):819-831.
    [34]李钟山,张艳霞,定立,等.大兴安岭南段西坡铜多金属成矿系统[J].矿床地质,2012(增刊1):15-16.
    [35]马玉波,邢树文,肖克炎,等.大兴安岭Cu-Mo-Ag多金属成矿带主要地质成矿特征及潜力分析[J].地质学报,2016,90(7):1316-1333.
    [36]XIAO W J,WINDLEY B F,HAO J,et al.Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:termination of the central Asian orogenic belt[J].Tectonics,2003,22(6):1069-1089.
    [37]LI N,CHEN Y J,ULRICH T,et al.Fluid inclusion study of the Wunugetu Cu-Mo deposit,Inner Mongolia,China[J].Mineralium Deposita,2012,47(5):467-481.
    [38]祁进平,陈衍景,PIRAJNO F.东北地区浅成低温热液矿床的地质特征和构造背景[J].矿物岩石,2005,25(2):47-59.
    [39]WU G,CHEN Y C,CHEN Y J,et al.Zircon U-Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou Group and granitic complexes in the Argun massif of the northern Great Hinggan Range,NE China,and their tectonic implications[J].Journal of Asian Earth Sciences,2012,49(3):214-233.
    [40]WU F Y,SUN D Y,GE W C,et al.Geochronology of the Phanerozoic granitoids in northeastern China[J].Journal of Asian Earth Sciences,2011,41(1):1-30.
    [41]ZHAI D,LIU J,WANG J,et al.Zircon U-Pb and molybdenite Re-Os geochronology,and whole-rock geochemistry of the Hashitu molybdenum deposit and host granitoids,Inner Mongolia,NE China[J].Journal of Asian Earth Sciences,2014,79(2):144-160.
    [42]ZHOU Z H,MAO J W,PETER L.Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit,southern Great Hinggan Range,NEChina:implication for their origin and tectonic setting[J].Journal of Asian Earth Sciences,2012,49(3):272-286.
    [43]GE W C,WU F Y,ZHOU C Y,et al.Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range[J].Chinese Science Bulletin,2005,50(18):2097-2105.
    [44]LIU J,WU G,LI Y,et al.Re-Os sulfide(chalcopyrite,pyrite and molybdenite)systematics and fluid inclusion study of the Duobaoshan porphyry Cu(Mo)deposit,Heilongjiang Province,China[J].Journal of Asian Earth Sciences,2012,49(3):300-312.
    [45]WU G,SUN F Y,ZHAO C S,et al.Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance[J].Chinese Science Bulletin,2005,50(23):2733-2743.
    [46]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京;地质出版社,1991.
    [47]李文国.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996.
    [48]苟军,孙德有,赵忠华,等.满洲里南部白音高老组流纹岩锆石U-Pb定年及岩石成因[J].岩石学报,2010,26(1):333-344.
    [49]张吉衡.大兴安岭中生代火山岩年代学及地球化学研究[D].武汉:中国地质大学(武汉),2009.
    [50]秦涛,郑常青,崔天日,等.内蒙古扎兰屯地区白音高老组火山岩地球化学、年代学及其地质意义[J].地质与资源,2014,23(2):146-153.
    [51]王琦.内蒙古白音诺铅锌多金属矿床夕卡岩及其含矿性研究[D].北京:北京大学,1991.
    [52]陈衍景,翟明国,蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题[J].岩石学报,2009,25(11):3-34.
    [53]内蒙古山金地质矿产勘查有限公司.内蒙古自治区克什克腾旗长岭子铅锌矿勘查2014年工作总结[R].呼和浩特:内蒙古山金地质矿产勘查有限公司,2014:1-34.
    [54]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].矿物学报,2007,27(增刊1):2085-2108.
    [55]BODNAR R J.A method of calculating fluid inclusion volumes based on vapor bubble diameters and p-V-T-Xproperties of inclusion fluids[J].Economic Geology,1983,78(3):535-542.
    [56]MEINERT L D,DIPPLE G M,NICOLESCU S.World skarn deposits[J].Economic Geology,2005,100:299-336.
    [57]BROWN P E.FLINCOR:a microcomputer program for the reduction and investigation of fluid-inclusion data[J].American Mineralogist,1989,74(11):1390-1393.
    [58]MACINNIS M S,SANCHEZ P L,BODNAR R J.Hokie flincs_H2O-NaCl:a microsoft excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX,properties of H2O-NaCl[J].Computers&Geosciences,2012,49(4):334-337.
    [59]BOUZAR I F,CLARK A.Prograde evolution and geothermal affinities of a major porphyry copper deposit:the Cerro Colorado Hypogene Protore,I Region,Northern Chile[J].Economic Geology,2006,101(1):95-134.
    [60]杨永飞,李诺,王莉娟.河南省东沟超大型钼矿床流体包裹体研究[J].岩石学报,2011,27(5):1453-1466.
    [61]WANG P,CHEN Y J,FU B,et al.Fluid inclusion and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan,China:a case study of porphyry systems in continental collision orogens[J].International Journal of Earth Sciences,2014,103(3):777-797.
    [62]ULRICH T,GUNTHER D,HEINRICH C A.Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J].Nature,1999,399(6737):676-679.
    [63]MERNAGH T P,BASTRAKOV E N,ZAW K,等.澳大利亚造山型金矿和侵入岩有关金矿系统流体包裹体资料和矿化过程的比较[J].岩石学报,2007,23(1):21-32.
    [64]PIRAJNO F.Hydrothermal processes and mineral systems[M].Amsterdam:Springer,2009.
    [65]FAN H R,HU F F,WILDE S A,et al.The Qiyugou goldbearing breccia pipes,Xiong’ershan region,central China:fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids[J].International Geology Review,2011,53(1):25-45.
    [66]胡受奚,周顺之,刘孝善.矿床学[M].北京:地质出版社,1982.
    [67]李诺,赖勇,鲁颖淮,等.河南祁雨沟金矿流体包裹体及矿床成因类型研究[J].中国地质,2008,35(6):1230-1239.
    [68]陈衍景.初论浅成作用和热液矿床成因分类[J].地学前缘,2010,17(2):27-34.
    [69]卢焕章.流体包裹体[M].北京:科学出版社,2004.
    [70]陈衍景,郭抗衡.河南银家沟夕卡岩型金矿的地质地球化学特征及成因[J].矿床地质,1993(3):265-272.
    [71]陈衍景,常兆山.中国夕卡岩型金矿床地质研究和勘查的进展与问题[J].有色金属矿产与勘查,1996(3):129-139.
    [72]石英霞,李诺,杨艳.河南省栾川县三道庄钼钨矿床地质和流体包裹体研究[J].岩石学报,2009,25(10):267-279.
    [73]李登峰,张莉,郑义.新疆阿尔泰塔拉特铁铅锌矿床流体包裹体研究及矿床成因[J].岩石学报,2013,29(1):178-190.
    [74]FANG J,CHEN H,ZHANG L,et al.Ore genesis of the Weibao lead-zinc district,Eastern Kunlun Orogen,China:constraints from ore geology,fluid inclusion and isotope geochemistry[J].International Journal of Earth Sciences,2015,104(5):1209-1233.
    [75]ZHENG Y,DING Z,CAWOOD P A,et al.Geology,geochronology and isotopic geochemistry of the Xiaoliugou W-Mo ore field in the Qilian Orogen,NW China:case study of a skarn system formed during continental collision[J].Ore Geology Reviews,2017,81:575-586.
    [76]陈衍景,李诺.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异[J].岩石学报,2009,25(10):169-200.
    [77]王玭.大陆碰撞与岩浆弧背景斑岩钼矿对比研究:以姚冲和迪彦钦阿木钼矿床为例[D].北京:中国科学院大学,2015.
    [78]李剑锋,王可勇,陆继胜,等.内蒙古红岭铅锌矿床成矿流体地球化学特征及矿床成因[J].地球科学:中国地质大学学报,2015(6):995-1005.
    [79]ZHONG J,CHEN Y J,PIRAJNO F,et al.Geology,geochronology,fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit,Zijinshan ore field,Fujian Province,China[J].Ore Geology Reviews,2014,57(1):61-77.
    [80]SILLITOE R H.A plate tectonic model for the origin of porphyry copper deposits[J].Economic Geology,1972,67(2):184-197.
    [81]RICHARDS J P.Tectono-magmatic precursors for porphyry Cu(Mo-Au)deposit formation[J].Economic Geology,2003,98(8):1515-1533.
    [82]HEINRICH C A.The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study[J].Mineralium Deposita,2005,39(8):864-889.
    [83]HEINRICH C A.Fluid-fluid interactions in magmatic-hydrothermal ore formation[J].Reviews in Mineralogy and Geochemistry,2007,65(1):363-387.
    [84]WILLIAMS-JONES A E.100th anniversary special paper:vapor transport of metals and the formation of magmatichydrothermal ore deposits[J].Economic Geology,2005,100(7):1287-1312.
    [85]冷成彪,张兴春,王守旭,等.岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展[J].地质论评,2009,55(1):100-112.
    [86]REED M H,SPHCHER N F.Boiling,cooling and oxidation in epithermal systems:a numerical modeling approach[J].Reviews in Economic Geology,1985,2:249-272.
    [87]LOGAN M A V.Mineralogy and geochemistry of the Gualilán skarn deposit in the Precordillera of western Argentina[J].Ore Geology Reviews,2000,17(1/2):113-138.
    [88]YAO Y,MERPHY P J,ROBB L J.Fluid characteristics of granitoid-hosted gold deposits in the Birimian terrane of Ghana:a fluid inclusion microthermometric and Raman spectroscopic study[J].Economic Geology,2001,96(7):1611-1643.
    [89]CALGARI A A.Fluid inclusion studies in quartz vein lets in the porphyry copper deposit at Sungun,East-Azarbaidjan,Iran[J].Journal of Asian Earth Sciences,2004,23(2):179-189.
    [90]BAKER T,ACHTERBERG E V,RYAN C G,et al.Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J].Geology,2004,32(2):117-120.
    [91]ZHOU T F,YUAN F,YUE S C,et al.Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarnand vein-type deposits,Anhui Province,South China[J].Ore Geology Reviews,2007,31:279-303.
    [92]张志,张承帅.福建马坑铁(钼)矿床夕卡岩矿物学特征及分带研究[J].岩石学报,2014,30(5):1339-1354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700