用户名: 密码: 验证码:
中国西南岩溶关键带结构与物质循环特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of structure and material cycling of the karst critical zone in Southwest China
  • 作者:曹建华 ; 杨慧 ; 张春来 ; 吴夏 ; 白冰 ; 黄芬
  • 英文作者:CAO Jianhua;YANG Hui;ZHANG Chunlai;WU Xia;BAI Bing;HUANG Fen;Key Laboratory of Karst Dynamics ( Ministry of Natural Resources/Guangxi) ,Institute of Karst Geology,Chinese Academy of Geological Sciences International Research Center on Karst under the Auspices of UNESCO;
  • 关键词:岩溶关键带 ; 岩溶碳循环 ; 岩溶发育 ; 中国西南
  • 英文关键词:karst critical zone;;karst carbon cycling;;karst development;;Southwest China
  • 中文刊名:DZDC
  • 英文刊名:Geological Survey of China
  • 机构:中国地质科学院岩溶地质研究所自然资源部/广西岩溶动力学重点实验室,联合国教科文组织国际岩溶研究中心;
  • 出版日期:2018-10-25 16:51
  • 出版单位:中国地质调查
  • 年:2018
  • 期:v.5;No.28
  • 基金:国家重点研发计划项目“喀斯特断陷盆地石漠化演变及综合治理技术与示范(编号:2016YFC0502500)”;; 国家自然科学重点项目(编号:41530316);; 中国地质调查局“全国地质环境创新工程(编号:IGCP-661)”及“岩溶关键带过程、资源环境可持续(编号:2017—2021)”联合资助
  • 语种:中文;
  • 页:DZDC201805001
  • 页数:12
  • CN:05
  • ISSN:10-1260/P
  • 分类号:3-14
摘要
岩溶关键带调查研究的目标是揭示岩溶生态系统的动态平衡和演化机制,旨在为经济社会提供资源环境服务的可持续管理对策,指出在合理的人为活动下增强岩溶关键带韧性的办法及修复受损部位的有效途径。碳酸盐岩作为可溶岩,赋予了岩溶关键带在结构上及物质循环过程中的岩石圈-生物圈相互作用等方面的若干特殊性。该文以中国西南岩溶区为例,总结了诸多学者的研究成果,揭示了从桂林岩溶区到重庆武隆岩溶区,岩溶关键带发育厚度由几米逐渐增厚至1 000 m的区域差异;岩溶关键带的垂向物质循环过程以土壤-表层岩溶带为中心环节,而在横向上则呈现"岛屿状"镶嵌分布特征,地表生态具脆弱性;岩溶关键带碳循环过程包括岩溶碳循环和生态碳循环两部分,碳汇则由植物碳汇、土壤碳汇和岩溶碳汇组成,初步估算其碳汇通量为64. 36 t/(km~2·a)。
        The goal of the karst critical zone research is to reveal the dynamic balance and evolution mechanism of the karst ecosystem,which can provide the sustainable management strategies of resources environment service for economic society. The research can indicate how to strengthen the flexibility of the karst critical zone under the reasonable Human activities,and provide the effective means to repair the damaged parts. Carbonate,as the soluble rock,gives the karst critical zone some particularities in structure and lithosphere-biosphere interaction of material cycling processes. Taking the karst area of Southwest China as an example,through summarizing the research results of many scholars,the authors revealed the regional difference of the karst critical zone development thickness,that explains why the thickness is several meters in Guilin karst area and one thousand meters in Wulong karst area of Chongqing. The vertical material cycling processes of the karst critical zone regard soil-surface karst zone as the central link,but it horizontally shows the island-like embedded distribution. The surface ecology is fragile. The carbon cycling processes of the karst critical zone include karst carbon cycling and ecology carbon cycling. The carbon sinks are composed of plant carbon sinks,soil carbon sinks and karst carbon sinks,and the total flux of these carbon sinks is 64. 36 t/( km~2·a) by the preliminary estimation.
引文
[1]毕思文.地球系统科学综述[J].地球物理学进展,2004,19(3):504-514.
    [2]美国国家航空和宇宙管理局地球系统科学委员会.地球系统科学[M].陈泮勤,马振华,王庚辰,译.北京:地震出版社,1992:1-178.
    [3]陈泮勤.地球系统科学的发展与展望[J].地球科学进展,2003,18(6):974-979.
    [4] Brantley S L,White T S,White A F,et al. Frontiers in exploration of the critical zone:report of a workshop sponsored by the national science foundation[R]. Newark:NSF,2006:1-30.
    [5] National Research Council. Basic research opportunities in Earth science[M]. Washington,DC:National Academy Press,2001.
    [6]杨建锋,张翠光.地球关键带:地质环境研究的新框架[J].水文地质工程地质,2014,41(3):98-104,110.
    [7]杨宗喜,唐金荣,周平,等.大数据时代下美国地质调查局的科学新观[J].地质通报,2013,32(9):1337-1343.
    [8] Richter D B Jr,Mobley M L. Monitoring Earth’s critical zone[J]. Science,2009,326(5956):1067-1068.
    [9] Banwart S,Bernasconi S M,Bloem J,et al. Soil processes and functions in critical zone observatories:hypotheses and experimental design[J]. Vadose Zone J,2011,10(3):974-987.
    [10]朱永官,李刚,张甘霖,等.土壤安全:从地球关键带到生态系统服务[J].地理学报,2015,70(12):1859-1869.
    [11] Sullivan P,Wymore A,Mc Dowell W,et al. New opportunities for critical zone science[C]//Proceedings of 2017 Arlington Meeting for CZ Science White Booklet.[S. l.]:CZO,2017:1-41.
    [12]张远海,朱德浩.中国大型岩溶洞穴空间分布及演变规律[J].桂林理工大学学报,2012,32(1):20-28.
    [13]朱学稳,陈伟海,Lynch E.武隆喀斯特及其地壳抬升性质解读[J].中国岩溶,2007,26(2):119-125.
    [14]韦跃龙,陈伟海,黄保健.广西乐业国家地质公园地质遗迹成景机制及模式[J].地理学报,2010,65(5):580-594.
    [15]朱学稳,黄保健,朱德浩,等.广西乐业大石围天坑群发现探测定义与研究[M].南宁:广西科学技术出版社,2003:1-90.
    [16]陈余道,蒋亚萍,朱银红.漓江流域典型岩溶生态系统的自然特征差异[J].自然资源学报,2003,18(3):326-332.
    [17]刘之葵,梁金城.地下水位变化对桂林地区地基基础的影响[J].中国岩溶,2005,24(3):245-249.
    [18]朱学稳,汪训一,朱德浩,等.桂林岩溶地貌与洞穴研究[M].北京:地质出版社,1988:1-249.
    [19]潘桂棠,陆松年,肖庆辉,等.中国大地构造阶段划分和演化[J].地学前缘,2016,23(6):1-23.
    [20]苏金宝,董树文,张岳桥,等.川黔湘构造带构造样式及深部动力学制约[J].吉林大学学报(地球科学版),2014,44(2):490-506.
    [21]扈志勇,杨平恒,杨梅,等.川东槽谷区岩溶泉水物理化学动态特征及其环境效应研究——以重庆青木关岩溶槽谷姜家泉为例[J].现代地质,2009,23(6):1167-1173.
    [22]王宇,李燕,谭继中,等.断陷盆地岩溶水赋存规律[M].昆明:云南科技出版社,2003:1-140.
    [23]姜朝松,周瑞琦,王绍晋.昆明盆地形成模式及其演化[J].地震研究,2003,26(2):172-175.
    [24]张美良,刘功余,邓自强,等.广西晚白垩世古岩溶与成矿研究[M].北京:地质出版社,2010:1-137.
    [25]刘功余.桂林岩溶区红色钙泥质岩中发现白垩纪轮藻化石[J].中国岩溶,1984,3(1):16.
    [26]刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(2/3):95-102.
    [27]广西壮族自治区地方志编纂委员会.广西通志——岩溶志[M].南宁:广西人民出版社,2000:1-216.
    [28]莫日生,邱书敏.广西岩溶地下水资源开发利用[M]//中国地质调查局/中国地质科学院岩溶地质研究所.中国西南地区岩溶地下水资源开发与利用.北京:地质出版社,2006:62-72.
    [29]陈玉玲,甘伏平,卢呈杰,等.裸露岩溶区地下河管道综合地球物理方法探测研究[J].地球物理学进展,2013,28(3):1608-1616.
    [30]韦跃龙,陈伟海,罗劬侃.广西都安地下河地质公园喀斯特景观特征及其形成演化[J].热带地理,2018,38(1):34-47.
    [31]广西壮族自治区地质矿产局.广西地苏地下河系[M].北京:地质出版社,1989:1-263.
    [32]陈文俊.地苏岩溶地下河系研究[J].中国岩溶,1988,7(3):223-227.
    [33]张均.新地球观[J].地球科学进展,1992,7(1):57-64.
    [34]王将克,常弘,廖金凤,等.生物地球化学[M].广州:广东科技出版社,1999:1-637.
    [35]曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    [36]蒋忠诚.中国南方表层岩溶带的特征及形成机理[J].热带地理,1998,18(4):322-326.
    [37]刘天财.喀斯特山地表层岩溶带发育厚度空间分布规律研究[D].贵阳:贵州师范大学,2016:1-57.
    [38] Balakowicz M. Epikarst[M]//White W B,Culver D C. Encyclopedia of caves. 2nd ed. Tokyo:Academic Press,2012:284-288.
    [39] Ford D,Williams P. Karst hydrogeology and geomorphology[M].Chichester:Wiley,2007:1-561.
    [40] Williams P W. The role of the subcutaneous zone in karst hydrology[J]. J Hydrol,1983,61(1/3):45-67.
    [41]陈植华,陈刚,靖娟利,等.西南岩溶石山表层带岩溶水资源调蓄能力初步评价[M]//中国地质调查局.中国岩溶地下水与石漠化研究.南宁:广西科学技术出版社,2003:148-154.
    [42]覃小群,蒋忠诚.表层岩溶带及其水循环的研究进展与发展方向[J].中国岩溶,2005,24(3):250-254.
    [43]曹建华,周莉,杨慧,等.桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J].第四纪研究,2011,31(3):431-437.
    [44]易淑棨,胡预生.土壤学[M].北京:中国农业出版社,1993.
    [45]全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998.
    [46]黄芬,唐伟,汪进良,等.外源水对岩溶碳汇的影响——以桂林毛村地下河为例[J].中国岩溶,2011,30(4):417-421.
    [47] Goldscheider N,Drew D. Methods in Karst Hydrogeology[M].New York:Taylor&Francis,2007.
    [48] Huang F,Zhang C L,Xie Y C,et al. Inorganic carbon flux and its source in the karst catchment of Maocun,Guilin,China[J]. Environ Earth Sci,2015,74(2):1079-1089.
    [49] Larson C. An unsung carbon sink[J]. Science,2011,334(6058):886-887.
    [50] Cao J H,Hu B,Groves C,et al. Karst dynamic system and the carbon cycle[J]. Z Geomorphol,2016,60(2):35-55.
    [51]蒲俊兵,蒋忠诚,袁道先,等.岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析[J].地球科学进展,2015,30(10):1081-1090.
    [52] Ciais P,Sabine C,Bala G,et al. Carbon and other biogeochemical cycles[C]//Stocker T F,Qin D,Plattner G K,et al. Climate Change 2013:the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2013:465-570.
    [53] MarcéR,Obrador B,MorguíJ A,et al. Carbonate weathering as a driver of CO2supersaturation in lakes[J]. Nat Geosci,2015,8(2):107-111.
    [54] Ludwig W,Amiotte-Suchet P,Munhoven G,et al. Atmospheric CO2 consumption by continental erosion:present-day controls and implications for the last glacial maximum[J]. Glob Planet Change,1998,16/17:107-120.
    [55]王冰,杨胜天,王玉娟.贵州省喀斯特地区植被净第一性生产力的估算[J].中国岩溶,2007,26(2):98-104.
    [56]董丹,倪健.利用CASA模型模拟西南喀斯特植被净第一性生产力[J].生态学报,2011,31(7):1855-1866.
    [57]方精云,柯金虎,唐志尧,等.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报,2001,25(4):414-419.
    [58]杨延征,马元丹,江洪,等.基于IBIS模型的1960—2006年中国陆地生态系统碳收支格局研究[J].生态学报,2016,36(13):3911-3922.
    [59]陈泮勤,王效科,王礼茂.中国陆地生态系统碳收支与增汇对策[M].北京:科学出版社,2008:1-394.
    [60]黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报,2006,51(7):750-763.
    [61]周运超,罗美.喀斯特小流域土壤厚度的影响因素[J].山地农业生物学报,2017,36(3):1-5.
    [62]张珍明,周运超,田潇,等.喀斯特小流域土壤有机碳空间异质性及储量估算方法[J].生态学报,2017,37(22):7647-7659.
    [63]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330-332.
    [64]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    [65]方精云,郭兆迪,朴世龙,等. 1981—2000年中国陆地植被碳汇的估算[J].中国科学D辑:地球科学,2007,37(6):804-812.
    [66] Pacala S W,Hurtt G C,Baker D,et al. Consistent land-and atmosphere-based U. S. carbon sink estimates[J]. Science,2001,292(5525):2316-2320.
    [67] Janssens I A,Freibauer A,Ciais P,et al. Europe’s terrestrial biosphere absorbs 7 to 12%of European anthropogenic CO2emissions[J]. Science,2003,300(5625):1538-1542.
    [68] Cao J H,Wu X,Huang F,et al. Global significance of the carbon cycle in the karst dynamic system:evidence from geological and ecological processes[J]. China Geol,2018,1(1):17-27.
    [69]覃小群,刘朋雨,黄奇波,等.珠江流域岩石风化作用消耗大气/土壤CO2量的估算[J].地球学报,2013,34(4):455-462.
    [70]覃小群,蒋忠诚,张连凯,等.珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J].地质通报,2015,34(9):1749-1757.
    [71]曹建华,杨慧,康志强.区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J].科学通报,2011,56(26):2181-2187.
    [72]杨立铮.中国南方地下河分布特征[J].中国岩溶,1985,4(1/2):92-100.
    [73]裴建国,梁茂珍,陈阵.西南岩溶石山地区岩溶地下水系统划分及其主要特征值统计[J].中国岩溶,2008,27(1):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700