用户名: 密码: 验证码:
新型含Cu管线钢的抗氢致开裂性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels
  • 作者:史显波 ; 严伟 ; 王威 ; 单以银 ; 杨柯
  • 英文作者:SHI Xianbo;YAN Wei;WANG Wei;SHAN Yiyin;YANG Ke;Institute of Metal Research, Chinese Academy of Sciences;
  • 关键词:管线钢 ; Cu ; 氢致开裂 ; 富Cu相 ; 氢陷阱
  • 英文关键词:pipeline steel;;Cu;;hydrogen-induced cracking;;Cu-rich phase;;hydrogen trap
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:中国科学院金属研究所;
  • 出版日期:2018-10-11
  • 出版单位:金属学报
  • 年:2018
  • 期:v.54
  • 基金:沈阳市科技计划项目No.18-013-0-53~~
  • 语种:中文;
  • 页:JSXB201810001
  • 页数:7
  • CN:10
  • ISSN:21-1139/TG
  • 分类号:3-9
摘要
对比研究了传统X80管线钢和新型含Cu管线钢的氢致开裂敏感性。结果表明,传统X80管线钢抗氢致开裂性能不佳,氢致裂纹主要沿着马氏体/奥氏体(M/A)岛与基体界面扩展;而不同Cu含量的新型管线钢具有优异的抗氢致开裂性能,表现为氢致开裂实验后无裂纹出现。分析认为,含Cu管线钢中的纳米尺寸富Cu相提供了捕获H的有利陷阱,这种均匀弥散析出的细小富Cu相为H的分布提供了众多位置,有助于避免在局部区域产生很高的H富集而发生微观区域氢脆。纳米尺寸富Cu相作为有利氢陷阱为研发高强度兼具优异抗氢致开裂性能的新型管线钢提供了新思路。
        Hydrogen-induced cracking(HIC) resistance of pipeline steels is one of the most important properties for sour gas service pipelines. For the conventional pipeline steels, the strength level mainly depends on the Mn content. However, as the Mn content increases, the unfavorable microstructures such as large size martensite/austenite(M/A) islands, bainite or martensite will be generated, which will deteriorate the HIC resistance of the steels. Therefore, it is hard to simultaneously improve strength level and HIC resistance for pipeline steel. The nature of HIC in pipeline steel is hydrogen embrittlement, which is essentially the redistribution of H atoms into the matrix of steel. So, how to make the distribution of H atoms in the steel as evenly as possible without causing local enrichment is a key factor to improve the HIC of pipeline steels. In this work, the susceptibilities of HIC of traditional X80 and novel Cu-bearing pipeline steels were studied with comparison. The results showed that the X80 pipeline steel behaved bad HIC resistance. The hydrogen-induced cracks mainly expanded along the interface between M/A islands and the matrix. However, the novel Cu-bearing pipeline steels with different Cu contents exhibited excellent HIC resistance, showing no cracks were produced after HIC test. It was analyzed that nano-sized Cu-rich precipitates in the Cu-bearing pipeline steels are speculated to act as the beneficial hydrogen traps, and these uniformly dispersed fine Cu-rich phases in matrix provide many sites for the distribution of H atoms,which helps to avoid the localized high concentration H atoms enrichment leading to hydrogen embrittlement. Taking nano-sized Cu-rich phases as a type of beneficial hydrogen traps provides a new way for the development of new pipeline steels with high strength and excellent HIC resistance.
引文
[1] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corros. Sci., 2008, 50:1865
    [2] Koh S U, Jung H G, Kang K B, et al. Effect of microstructure on hydrogen-induced cracking of linepipe steels[J]. Corrosion, 2008,64:574
    [3] Beidokhti B, Dolati A, Koukabi A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Mater.Sci. Eng., 2009, A507:167
    [4] Shi X B, Yan W, Wang W, et al. HIC and SSC behavior of highstrength pipeline steels[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28:799
    [5] Shi X B, Yan W, Wang W, et al. Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel[J]. J. Iron. Steel. Res. Int., 2015, 22:937
    [6] Shi X B, Wang W, Yan W, et al. Effect of martensite/austenite(M/A)constituent on H2S resistance of high strength pipeline steels[J].J. Chin. Soc. Corros. Prot., 2015, 35:129(史显波,王威,严伟等. M/A组元对高强度管线钢抗H2S性能的影响[J].中国腐蚀与防护学报, 2015, 35:129)
    [7] Pressouyre G M. A classification of hydrogen traps in steel[J].Metall. Trans., 1979, 10A:1571
    [8] Pressouyre G M, Bernstein I M. An example of the effect of hydrogen trapping on hydrogen embrittlement[J]. Metall. Trans., 1981,12A:835
    [9] Yamasaki S, Takahashi T. Evaluation method of delayed fracture property of high strength steels[J]. Tetsu Hagané, 1997, 83:454(山崎真吾,高橋稔彦.高強度鋼の耐遅れ破壊特性の定量的評価方法[J].鉄と鋼, 1997, 83:454)
    [10] Szost B A, Vegter R H, Rivera-Díaz-del-Castillo P E J. Developing bearing steels combining hydrogen resistance and improved hardness[J]. Mater. Des., 2013, 43:499
    [11] Takahashi J, Kawakami K, Kobayashi Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography[J]. Scr. Mater., 2010, 63:261
    [12] Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogentrapping sites in vanadium carbide precipitation steel by atom probe tomography[J]. Scr. Mater., 2012, 67:213
    [13] Zhao M C, Yang K. Strengthening and improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nanosized carbonitrides[J]. Scr. Mater., 2005, 52:881
    [14] Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels[J]. Acta Metall. Sin., 2017, 53:153(史显波,徐大可,闫茂成等.新型含Cu管线钢的微生物腐蚀行为研究[J].金属学报, 2017, 53:153)
    [15] Shi X B, Yan W, Yan M C, et al. Effect of Cu addition in pipeline steels on microstructure, mechanical properties and microbiologically influenced corrosion[J]. Acta Metall. Sin.(Engl. Lett.),2017, 30:601
    [16] Herbsleb G, Poepperling R K, Schwenk W. Occurrence and prevention of hydrogen induced stepwise cracking and stress corrosion cracking of low alloy pipeline steels[J]. Corrosion, 1980, 36:247
    [17] Taira T, Tsukada K, Kobayashi Y. Sulfide corrosion cracking of linepipe for sour gas service[J]. Corrosion, 1981, 37:5
    [18] Yoshino Y. Low alloy steels in hydrogen sulfide environment[J].Corrosion, 1982, 38:156
    [19] Craig B D. Effect of copper on the protectiveness of iron sulfide films[J]. Corrosion, 1984, 40:471
    [20] Mendibide C, Sourmail T. Composition optimization of highstrength steels for sulfide stress cracking resistance improvement[J]. Corros. Sci., 2009, 51:2878
    [21] Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of highstrength steels[J]. Acta Mater., 2013, 61:5996
    [22] Hejazi D, Hap A J, Yazdipour N, et al. Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking[J]. Mater. Sci. Eng., 2012, A551:40
    [23] Chu W Y. Hydrogen Damaged and Delayed Fracture[M]. Beijing:Metallurgy Industry Press, 1988:1(褚武扬.氢损伤和滞后断裂[M].北京:冶金工业出版社, 1988:1)
    [24] Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2Sresistant behaviors of acicular ferrite and ultrafine ferrite[J]. Mater. Lett., 2002, 57:141
    [25] Zhao M C, Tang B, Shan Y Y. Role of microstructure on sulfide stress cracking of oil and gas pipeline steels[J]. Metall. Mater.Trans., 2003, 34A:1089

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700