用户名: 密码: 验证码:
主动调Q内腔式Nd…YAG/m-LaVO_4拉曼激光器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Actively Q-Switched Intracavity Nd…YAG/m-LaVO_4 Raman Laser
  • 作者:白如雪 ; 林海枫 ; 张莉珍 ; 陈玮冬 ; 林州斌 ; 张戈
  • 英文作者:Bai Ruxue;Lin Haifeng;Zhang Lizhen;Chen Weidong;Lin Zhoubin;Zhang Ge;Key Laboratory of Optoelectronic Materials Chemistry and Physics,Fujian Institute of Research on Structure of Matter,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:激光器 ; 拉曼激光器 ; 主动调Q激光器 ; m-LaVO4晶体 ; 全固态激光器
  • 英文关键词:lasers;;Raman lasers;;actively Q-switched lasers;;m-LaVO4 crystal;;solid-state lasers
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:中国科学院福建物质结构研究所光电材料化学与物理重点实验室;中国科学院大学;
  • 出版日期:2018-04-27 15:10
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.501
  • 基金:国家自然科学基金(61575199,61775217,11404332)
  • 语种:中文;
  • 页:JJZZ201809020
  • 页数:6
  • CN:09
  • ISSN:31-1339/TN
  • 分类号:186-191
摘要
实验研究了具有单斜独居石结构的钒酸镧(m-LaVO_4)晶体的室温拉曼光谱,报道了基于m-LaVO_4晶体作为拉曼增益介质的主动调Q内腔式脉冲拉曼激光器。受激拉曼变频实验以波长为808nm的光纤耦合半导体激光器(LD)作为抽运激发光源,Nd…YAG晶体为产生基频激光的增益介质,融石英声光调Q器为主动调Q元件,采用紧凑的法布里-珀罗两镜平凹谐振腔可有效地产生波长为1170.9nm的一阶斯托克斯脉冲激光。当注入抽运功率为6.51W,脉冲重复频率为30kHz时,实验产生的一阶斯托克斯脉冲激光的最高平均功率为767mW,相应的脉冲宽度为13.8ns,单脉冲能量为25.6μJ,峰值功率为1.85kW。
        We investigate the room-temperature Raman spectrum of monoclinic monazite-type LaVO_4(m-LaVO_4)crystal and report a diode end-pumped intracavity actively Q-switched m-LaVO_4 Raman laser.In this experiment,a fiber-coupled diode laser(LD)with a wavelength of 808 nm is used as a pumping excitation source,a Nd…YAG crystal is used as a gain medium for generating a fundamental-frequency laser,and a quartz-acoustic-acoustic Qswitch is used as an active Q-switched component.A compact Fabry-Perot cavity composed by two Fabry-Perot mirrors produces a first-order Stokes pulsed laser with a wavelength of 1170.9 nm.When the input pump power is6.51 Wand the pulse repetition frequency is 30 kHz,the experiment produces the first-order Stokes laser with a maximum average power of 767 mW,the corresponding pulse width of 13.8 ns,the single pulse energy of 25.6μJ and the peak power of 1.85 kW.
引文
[1]Feng Y,Jiang H W,Zhang L.Advances in high power Raman fiber laser technology[J].Chinese Journal of Lasers,2017,44(2):0201005.冯衍,姜华卫,张磊.高功率拉曼光纤激光器技术研究进展[J].中国激光,2017,44(2):0201005.
    [2]Xu H,Dai S X,Zhang P Q,et al.Research progress in chalcogenide glass Raman fiber lasers[J].Laser&Optoelectronics Progress,2016,53(3):030004.徐航,戴世勋,张培晴,等.硫系拉曼光纤激光器研究进展[J].激光与光电子学进展,2016,53(3):030004.
    [3]Pask H M.The design and operation of solid-state Raman lasers[J].Progress in Quantum Electronics,2003,27(1):3-56.
    [4]Wang P,Ma T,Slipchenko M N,et al.High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite Raman laser[J].Scientific Reports,2014,4:6889.
    [5]Pask H M,Dekker P,Mildren R P,et al.Wavelength-versatile visible and UV sources based on crystalline Raman lasers[J].Progress in Quantum Electronics,2008,32(3/4):121-158.
    [6]Pask H M,Myers S,Piper J A,et al.High average power,all-solid-state external resonator Raman laser[J].Optics Letters,2003,28(6):435-437.
    [7]Pask H M,Piper J A.Efficient all-solid-state yellow laser source producing 1.2 W average power[J].Optics Letters,1999,24(21):1490-1492.
    [8]Kaminskii A A,Ueda K I,Eichler H J,et al.Tetragonal vanadates YVO4 and GdVO4:new efficientχ(3)-materials for Raman lasers[J].Optics Communications,2001,194(1/2/3):201-206.
    [9]Mildren R P,Pask H M,Ogilvy H,et al.Discretely tunable,all-solid-state laser in the green,yellow,and red[J].Optics Letters,2005,30(12):1500-1502.
    [10]Shen H B,Wang Q P,Zhang X Y,et al.Simultaneous dual-wavelength operation of NdYVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522nm[J].Optics Letters,2012,37(19):4113-4115.
    [11]Su K W,Chang Y T,Chen Y F.Efficient high-peakpower diode-pumped actively Q-switched NdYAG/YVO4intracavity Raman laser[J].Applied Optics,2008,47(35):6675-6679.
    [12]Jiang W,Zhu S Q,Chen W D,et al.Q-switched YbYAG/YVO4 Raman laser[J].IEEE Photonics Technology Letters,2015,27(10):1080-1083.
    [13]Jiang W,Zhu S Q,ChenX Z,et al.Compact passively Q-switched Raman laser at 1176 nm and yellow laser at 588nm using Nd3+YAG/Cr4+YAG composite crystal[J].Applied Optics,2014,53(7):1328-1332.
    [14]Cheng P,Zhao J Q,Xu F,et al.Diode-pumped midinfrared YVO4 Raman laser at 2418nm[J].Applied Physics B,2017,124(1):5.
    [15]Chen Y F.High-power diode-pumped actively Q-switched NdYVO4 self-Raman laser:influence of dopant concentration[J].Optics Letters,2004,29(16):1915-1917.
    [16]Chen Y F.Efficient 1521-nm NdGdVO4 Raman laser[J].Optics Letters,2004,29(22):2632-2634.
    [17]Kisel V E,Troshin A E,Tolstik N A,et al.Q-switched Yb3+YVO4 laser with Raman selfconversion[J].Applied Physics B,2005,80(4/5):471-473.
    [18]Lee A J,Spence D J,Piper J A,et al.Awavelength-versatile,continuous-wave,self-Raman solid-state laser operating in the visible[J].Optics Express,2010,18(19):20013-20018.
    [19]Lee A J,Pask H M,Spence D J,et al.Efficient5.3W CW laser at 559nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman NdGdVO4laser[J].Optics Letters,2010,35(5):682-684.
    [20]Mota A D,Rossi G,Ortega T A,et al.Strategies to run an ophthalmological CW self-Raman laser in micro-second pulsed laser regime[C]∥Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference,2011:CA_P33.
    [21]Ortega T A,Mota A D,Rossi G,et al.Very compact and high-power CW self-Raman laser for ophthalmological applications[J].Proceedings of SPIE,2010,7578:757822.
    [22]Kaminskii A A,Rhee H,Eichler H J,et al.Newχ(3)-nonlinear-laser manifestations in tetragonal LuVO4 crystal:more than sesqui-octave Ramaninduced Stokes and anti-Stokes comb generation and cascaded self-frequencytripling"[J].Applied Physics B,2008,93(4):865-872.
    [23]Kaminskii A A,Yu H,Zhang H,et al.Monoclinic m-LaVO4:a novel high Raman gain SRS-active crystal[J].Laser Physics,2014,24(12):125803.
    [24]Yoneda H,Yu H,Zhang H,et al.Raman-induced impulsive Stokes lasing in novel SRS-active monoclinic m-LaVO4crystal[J].Physica Status Solidi(RRL)-Rapid Research Letters,2014,9(1):72-76.
    [25]Kaminskii A A.Femtosecond SRS-generation of coherent optical phonons in vanadate crystals mLaVO4and t-GdVO4(SRS-phononics of the crystals)[J].Doklady Physics,2016,61(5):207-210.
    [26]Kaminskii A A,Lux O,Rhee H,et al.New manifestations ofχ(3)-nonlinear laser interactions in tetragonal LuVO4and YbVO4crystals attractive for SRS-converters and self-Raman lasers[J].Laser Physics Letters,2012,9(12):879-887.
    [27]Zhang L Z,Hu Z S,Lin Z B,et al.Growth and spectral properties of Nd3+LaVO4 crystal[J].Journal of Crystal Growth,2004,260(3/4):460-463.
    [28]Miller S A,Caspers H H,Rast H E.Lattice vibrations of yttrium vanadate[J].Physical Review,1968,168(3):964-969.
    [29]Basiev T T,Sobol A A,Zverev P G,et al.Raman spectroscopy of crystals for stimulated Raman scattering[J].Optical Materials,1999,11(4):307-314.
    [30]Nakashima T,Nakazawa M,Nishi K,et al.Effect of stimulated Raman scattering on pulse-compression characteristics[J].Optics Letters,1987,12(6):404-406.
    [31]Reintjes J,Lehmberg R H,Chang R S F,et al.Beam cleanup with stimulated Raman scattering in the intensity-averaging regime[J].Journal of the Optical Society of America B,1986,3(10):1048.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700