用户名: 密码: 验证码:
灌溉对非饱和带中砷迁移转化过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Irrigation Practices on Arsenic Mobilization and Transformation in the Unsaturated Zone
  • 作者:严怡君 ; 谢先军 ; 肖紫怡 ; 李俊霞
  • 英文作者:Yan Yijun;Xie Xianjun;Xiao Ziyi;Li Junxia;School of Environmental Studies,China University of Geosciences(Wuhan);State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Wuhan);
  • 关键词: ; 灌溉 ; 非饱和带 ; 吸附作用 ; 氧化还原
  • 英文关键词:arsenic;;irrigation;;unsaturated zone;;adsorption;;redox
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)环境学院;中国地质大学(武汉)生物地质环境地质国家重点实验室;
  • 出版日期:2018-09-15
  • 出版单位:地质科技情报
  • 年:2018
  • 期:v.37;No.182
  • 基金:国家自然科学基金项目(41372254);; 湖北省重大科技创新项目(2016ACA167)
  • 语种:中文;
  • 页:DZKQ201805029
  • 页数:9
  • CN:05
  • ISSN:42-1240/P
  • 分类号:212-220
摘要
通过场地灌溉试验,探讨了灌溉活动对非饱和带中砷迁移转化过程的影响机理。结果表明:灌溉过程中非饱和带中砷的迁移转化受多个地球化学过程共同控制,非饱和带pH值、Ec值、SO_4~(2-)和HCO_3~-与As的竞争吸附以及氧化还原条件的波动都会影响土壤孔隙水中砷的质量浓度。灌溉活动导致土壤处于相对还原环境,铁氧化物矿物还原溶解,被吸附或与之共沉淀的砷被释放进入水相,灌溉结束后,土壤逐渐恢复相对氧化环境,重新生成铁氧化物矿物,土壤孔隙水中砷以吸附/共沉淀形式被其固定。因此,通过改变非饱和带氧化还原条件导致铁氧化物矿物的沉淀/溶解是灌溉作用下非饱和带水体中砷迁移转化的主要原因。
        In this study,the influence mechanism of irrigation practices on arsenic mobilization and transformation in the unsaturated zone is discussed by field irrigation practices.The results show that arsenic mobilization in the unsaturated zone during high arsenic groundwater irrigation practices is influenced by multiple geochemical process.The arsenic concentration is affected by the pH,the competitive adsorption between SO_4~(2-) and HCO_3~- and the redox volatility in the unsaturated zone.During the irrigation,the soil is in the relatively reducing conditions,the iron oxide mineral is dissolved,and the arsenic which is combined with their on oxide mineral due to coprecipitation or sorption is released into soil pore water.After the irrigation,the soil comes into the relatively oxidizing conditions,in which the iron oxide mineral precipitates,and the arsenic of soil pore water is fixed by the iron oxide mineral due to coprecipitation or sorption.Therefore,the change of the redox condition,which causes the precipitation/dissolution of the iron oxide mineral,is the main reason of arsenic mobilization in the unsaturated zone in irrigation practices.
引文
[1]罗婷,景传勇.地下水砷污染形成机制研究进展[J].环境化学,2011,30(1):77-83.
    [2]Meliker J R,Wahl R L,Cameron L L,et al.Arsenic in drinking water and cerebrovascular disease,diabetes mellitus,and kidney disease in Michigan:A standardized mortality ratio analysis[J].Environmental Health,2007,6(1):4.
    [3]Nordstrom D K.Public health:Worldwide occurrences of arsenic in ground water[J].Science,2002,296:2143-2145.
    [4]郭华明,杨素珍,沈照理.富砷地下水研究进展[J].地球科学进展,2007,22(11):1109-1117.
    [5]Fendorf S,Michael H A,Geen A V.Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J].Science,2010,328:1123.
    [6]Busbee M W,Kocar B D,Benner S G.Irrigation produces elevated arsenic in the underlying groundwater of a Semi-Arid Basin in Southwestern Idaho[J].Applied Geochemistry,2009,24(5):843-859.
    [7]Harvey C F,Swartz C,Badruzzaman A B M,et al.Response to comments on"arsenic mobility and groundwater extraction in bangladesh"[J].Science,2003,300:584.
    [8]Harvey C F,Swartz C H,Badruzzaman A B,et al.Arsenic mobility and groundwater extraction in Bangladesh[J].Science,2002,298:1602-1606.
    [9]Buschmann J,Berg M.Impact of sulfate reduction on the scale of arsenic contamination in groundwater of the Mekong,Bengal and Red River deltas[J].Applied Geochemistry,2009,24(7):1278-1286.
    [10]Harvey C F,Ashfaque K N,Yu W,et al.Groundwater dynamics and arsenic contamination in Bangladesh[J].Chemical Geology,2006,228(1):112-136.
    [11]Nakaya S,Natsume H,Masuda H,et al.Effect of groundwater flow on forming arsenic contaminated groundwater in Sonargaon,Bangladesh[J].Journal of Hydrology,2011,409(3):724-736.
    [12]Xie X,Wang Y,Su C,et al.Influence of irrigation practices on arsenic mobilization:Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin,northern China[J].Journal of Jinan University,2006,424/425(6):37-47.
    [13]Norra S,Berner Z A,Agarwala P,et al.Impact of irrigation with As rich groundwater on soil and crops:A geochemical case study in West Bengal Delta Plain,India[J].Applied Geochemistry,2005,20(10):1890-1906.
    [14]Xie X,Wang Y,Ellis A,et al.Delineation of groundwater flow paths using hydrochemical and strontium isotope composition:A case study in high arsenic aquifer systems of the Datong basin,northern China[J].Journal of Hydrology,2013,476(2):87-96.
    [15]Panaullah G M,Alam T,Hossain M B,et al.Arsenic toxicity to rice(Oryza sativa L.)in Bangladesh[J].Plant&Soil,2009,317(1/2):31.
    [16]Polizzotto M L,Kocar B D,Benner S G,et al.Near-surface wetland sediments as a source of arsenic release to ground water in Asia.[J].Nature,2008,454:505-508.
    [17]Polizzotto M L,Lineberger E M,Matteson A R,et al.Arsenic transport in irrigation water across rice-field soils in Bangladesh[J].Environmental Pollution,2013,179(179C):210.
    [18]李广贺.郑州市污水灌溉对地下水污染的“时间效应”研究[J].吉林大学学报:地球科学版,1989,19(4):59-74.
    [19]Dittmar J,Voegelin A,Roberts L C,et al.Arsenic accumulation in a paddy field in Bangladesh:Seasonal dynamics and trends over a three-year monitoring period.[J].Environmental Science&Technology,2010,44(8):2925-2931.
    [20]张丽萍,谢先军,李俊霞,等.大同盆地富砷地下水的水化学与地球化学研究[J].生态毒理学报,2013,8(2):215-221.
    [21]柳亚清,谢先军,皮坤福,等.水流场及水化学过程对地下水中砷富集的影响[J].地质科技情报,2015,34(3):185-190.
    [22]邓娅敏.河套盆地西部高砷地下水系统中的地球化学过程研究[D].武汉:中国地质大学(武汉),2008.
    [23]Thi H M N,Postma D,Thi K T P,et al.Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du,Vietnam.[J].Geochimica et Cosmochimica Acta,2014,142:587-600.
    [24]Waychunas G A,Rea B A,Fuller C C,et al.Surface chemistry of ferrihydrite:Part 1.EXAFS studies of the geometry of coprecipitated and adsorbed arsenate[J].Geochimica et Cosmochimica Acta,1993,57(10):2251-2269.
    [25]Frost R R,Griffin R A.Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals[J].Soil Science Society of America Journal,1977,41(1):53-57.
    [26]Mercer K L,Tobiason J E.Removal of arsenic from high ionic strength solutions:Effects of ionic strength,pH,and preformed versus in situ formed HFO[J].Environmental Science&Technology,2008,42(10):3797-3802.
    [27]Zhao H S,R S.Competitive adsorption of phosphate and arsenate on goethite[J].Environmental Science&Technology,2001,35(24):4753-4757.
    [28]Radu T,Subacz J L,John J M P,et al.Effects of dissolved carbonate on arsenic adsorption and mobility[J].Environmental Science&Technology,2005,39(20):7875-7882.
    [29]Burton E D,Johnston S G,Bush R T.Microbial sulfidogenesis in ferrihydrite-rich environments:Effects on iron mineralogy and arsenic mobility[J].Geochimica et Cosmochimica Acta,2011,75(11):3072-3087.
    [30]Xie X,Wang Y,Ellis A,et al.Multiple isotope(O,S and C)approach elucidates the enrichment of arsenic in the groundwater from the Datong Basin,northern China[J].Journal of Hydrology,2013,498(18):103-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700