用户名: 密码: 验证码:
Mineralogy and Chemistry of Sulfides from the Longqi and Duanqiao Hydrothermal Fields in the Southwest Indian Ridge
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mineralogy and Chemistry of Sulfides from the Longqi and Duanqiao Hydrothermal Fields in the Southwest Indian Ridge
  • 作者:ZHANG ; Baisong ; LI ; Zhenqing ; HOU ; Zengqian ; ZHANG ; Weiyan ; XU ; Bo
  • 英文作者:ZHANG Baisong;LI Zhenqing;HOU Zengqian;ZHANG Weiyan;XU Bo;China University of Geosciences;Institute of Mineral Resources, Chinese Academy of Geological Sciences;Institute of Geology, Chinese Academy of Geological Sciences;Second Institute of Oceanography,State Oceanic Administration;
  • 英文关键词:mineralogy;;mineralogical chemistry;;Longqi;;Duanqiao;;Southwest Indian Ridge(SWIR)
  • 中文刊名:DZXW
  • 英文刊名:地质学报(英文版)
  • 机构:China University of Geosciences;Institute of Mineral Resources, Chinese Academy of Geological Sciences;Institute of Geology, Chinese Academy of Geological Sciences;Second Institute of Oceanography,State Oceanic Administration;
  • 出版日期:2018-10-15
  • 出版单位:Acta Geologica Sinica(English Edition)
  • 年:2018
  • 期:v.92
  • 基金:funded by the Resources Assessment Methods of Polymetallic Sulfides Program(NO.DY125-12-R-02);; the Metallogenic Potential and Resources Assessment of the Polymetallic Sulfides in the Atlantic Ridge Program(NO.DY125-11-R-01);; Deep Structure and Mineralization Process of the Lead-Zinc Deposit Systems fromed by the Continental Collision in Tibet Plateau(NO.2016YFC0600306)
  • 语种:英文;
  • 页:DZXW201805009
  • 页数:25
  • CN:05
  • ISSN:11-2001/P
  • 分类号:124-148
摘要
Recent investigations found that hydrothermal activity and sulfide mineralization occurs along the Southwest Indian Ridge(SWIR). The Longqi and Duanqiao hydrothermal fields between 49° E and 53° E of the SWIR are two prospective mineralization areas discovered by Chinese scientists. With the aim to determine the mineralogical and chemical characteristics of sulfide minerals, we have conducted detailed studies for samples from the two areas using an optical microscope, X-ray diffractometer, scanning electron microscope, and electron microprobe. The mineralization processes in the Longqi area are divided into three main stages:(1) the low-medium-temperature stage: colloform pyrite(Py I) + marcasite → euhedral pyrite(Py II),(2) the high-temperature stage: isocubanite(±exsolved chalcopyrite) + pyrrhotite → coarse-grained chalcopyrite(Ccp I), and(3) the medium–low-temperature stage: sphalerite + fine-grained chalcopyrite inclusions(Ccp II) → aggregates of anhedral pyrite(Py III) ± marcasite → Fe-oxide(-hydroxide) + amorphous silica. The mineralization processes in the Duanqiao area are divided into two main stages:(1) the medium–high-temperature stage: subhedral and euhedral pyrite(Py I′) → coarse-grained chalcopyrite(Ccp I′) and(2) the medium–low-temperature stage: sphalerite → fine-grained chalcopyrite(Ccp II′) + chalcopyrite inclusions(Ccp II′) → silica-cemented pyrite(Py II′) + marcasite → Fe-oxide + amorphous silica. We suggest that the fine-grained chalcopyrite inclusions in sphalerite from Longqi and Duanqiao were formed by co-precipitation and replacement mechanisms, respectively. Primary sphalerites from both fields are enriched in Fe(avg. 5.84 wt% for the Longqi field vs. avg. 3.69 wt% for the Duanqiao field), Co(avg. 185.56 ppm for the Longqi field vs. 160.53 ppm for the Duanqiao field), and Cd(avg. 1950 ppm for the Longqi field vs. avg. 525.26 ppm for the Duanqiao field). Cu contents in pyrite from the Duanqiao field(Py I′: avg. 849.23 ppm and Py II′: avg. 1191.11 ppm) tend to be higher than those from the Longqi field(Py I: avg. 26.67 ppm, Py II: avg. 445 ppm, and Py III: avg. 179.29 ppm). Chalcopyrite from both fields is enriched in Zn(Ccp I: avg. 3226.67 ppm, Ccp II: avg. 9280 ppm, Ccp I′: avg. 848 ppm, Ccp II′(inclusions): avg. 1098 ppm, and Ccp II′(fine-grained): avg. 1795 ppm). The varying contents of Zn in the different pyrite and chalcopyrite generations may result from the zone refining process. An integrated study of the mineralogy and mineralogical chemistry suggests that the hydrothermal fluids of the Longqi area are likely conditioned with higher temperatures and relatively lower fO2 and fS2 than those of the Duanqiao area, but in contrast to the former, the latter is much affected by the compositions of the surrounding rocks.
        Recent investigations found that hydrothermal activity and sulfide mineralization occurs along the Southwest Indian Ridge(SWIR). The Longqi and Duanqiao hydrothermal fields between 49° E and 53° E of the SWIR are two prospective mineralization areas discovered by Chinese scientists. With the aim to determine the mineralogical and chemical characteristics of sulfide minerals, we have conducted detailed studies for samples from the two areas using an optical microscope, X-ray diffractometer, scanning electron microscope, and electron microprobe. The mineralization processes in the Longqi area are divided into three main stages:(1) the low-medium-temperature stage: colloform pyrite(Py I) + marcasite → euhedral pyrite(Py II),(2) the high-temperature stage: isocubanite(±exsolved chalcopyrite) + pyrrhotite → coarse-grained chalcopyrite(Ccp I), and(3) the medium–low-temperature stage: sphalerite + fine-grained chalcopyrite inclusions(Ccp II) → aggregates of anhedral pyrite(Py III) ± marcasite → Fe-oxide(-hydroxide) + amorphous silica. The mineralization processes in the Duanqiao area are divided into two main stages:(1) the medium–high-temperature stage: subhedral and euhedral pyrite(Py I′) → coarse-grained chalcopyrite(Ccp I′) and(2) the medium–low-temperature stage: sphalerite → fine-grained chalcopyrite(Ccp II′) + chalcopyrite inclusions(Ccp II′) → silica-cemented pyrite(Py II′) + marcasite → Fe-oxide + amorphous silica. We suggest that the fine-grained chalcopyrite inclusions in sphalerite from Longqi and Duanqiao were formed by co-precipitation and replacement mechanisms, respectively. Primary sphalerites from both fields are enriched in Fe(avg. 5.84 wt% for the Longqi field vs. avg. 3.69 wt% for the Duanqiao field), Co(avg. 185.56 ppm for the Longqi field vs. 160.53 ppm for the Duanqiao field), and Cd(avg. 1950 ppm for the Longqi field vs. avg. 525.26 ppm for the Duanqiao field). Cu contents in pyrite from the Duanqiao field(Py I′: avg. 849.23 ppm and Py II′: avg. 1191.11 ppm) tend to be higher than those from the Longqi field(Py I: avg. 26.67 ppm, Py II: avg. 445 ppm, and Py III: avg. 179.29 ppm). Chalcopyrite from both fields is enriched in Zn(Ccp I: avg. 3226.67 ppm, Ccp II: avg. 9280 ppm, Ccp I′: avg. 848 ppm, Ccp II′(inclusions): avg. 1098 ppm, and Ccp II′(fine-grained): avg. 1795 ppm). The varying contents of Zn in the different pyrite and chalcopyrite generations may result from the zone refining process. An integrated study of the mineralogy and mineralogical chemistry suggests that the hydrothermal fluids of the Longqi area are likely conditioned with higher temperatures and relatively lower fO2 and fS2 than those of the Duanqiao area, but in contrast to the former, the latter is much affected by the compositions of the surrounding rocks.
引文
Baker,E.T.,and German,C.R.,2004.On the global distribution of hydrothermal vent fields.Mid-ocean ridges,American Geophysical Union.Geophysical Monograph 148,245-266.
    Barton,P.B.J.,and Bethke,P.M.,1987.Chalcopyrite disease in sphalerite:pathology and epidemiology.American Mineralogist,72(5):451-467.
    Becker,W.,and Lutz,H.D.,1978.Phase studies in the systems Co S1b Mn S,Co S1b Zn S,and CoS1bCdS.Materials Research Bulletin,13(9):907-911.
    Belissont,R.,Boiron,M.C.,Luais,B.,and Cathelineau,M.,2014.LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit(France):Insights into incorporation mechanisms and ore deposition processes.Geochimica Et Cosmochimica Acta,126(2):518-540.
    Belousov,I.,Large,R.R.,Meffre,S.,Danyushevsky,L.V.,Steadman,J.,and Beardsmore,T.,2016.Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton,Western Australia:Implications for gold and copper exploration.Ore Geology Reviews,79:474-499.
    Berkenbosch,H.A.,Ronde,C.E.J.D,Gemmell,J.B,Mcneill,A.W.,and Goemann,K.,2012.Mineralogy and formation of black smoker chimneys from Brothers Submarine Volcano,Kermadec Arc.Economic Geology,107(8):1613-1633.
    Bonnet,J.,Mosser-Ruck,R.,Caumon,M.C.,Rouer,O.,AndreMayer,A.S.,and Cauzid,J.,2016.Trace element distribution(Cu,Ga,Ge,Cd,and Fe)in sphalerite from the Tennessee MVT Deposits,USA,by combined EMPA,LA-ICP-MS,Raman Spectroscopy,and Crystallography.Canadian Mineralogist,54(5):1261-1284.
    Bortnikov,N.S.,Genkin,A.D,Dobrovol'Skaya,M.G.,Muravitskaya,G.N.,and Filimonova,A.A.,1991.The nature of chalcopyrite inclusions in sphalerite;exsolution,coprecipitation,or"disease"?.Economic Geology,86(5):1070-1082.
    Bortnikov,N.S.,Genkin,A.D.,Dobrovol'Skaya,M.G.,Muravitskaya,G.N.,and Filimonova,A.A.,1992.The nature of chalcopyrite inclusions in sphalerite;exsolution,coprecipitation,or"disease"?reply.Economic Geology,87(4):1192-1193.
    Brewer,P.G.,1975.Minor elements in seawater.Chemical oceanography,1:365-414.
    Cannat,M.,Rommevaux-Jestin,C.,Sauter,D.,Deplus,C.and Mendel,V.,1999.Formation of the axial relief at the very slow spreading Southwest Indian Ridge(49 to 69 E).Journal of Geophysical Research:Solid Earth,104(B10):22825-22843.
    Cannat,M.,Sauter,D.,Mendel,V.,Ruellan,E.,Okino,K.and Escartin,J.,2006.Modes of seafloor generation at a melt-poor ultraslow-spreading ridge.Geology,34(7):605-608.
    Cao Hong,2015.Mineralization of hydrothermal sulfide on the Southwest and Central Indian Ridge.Shangdong:Ocean University of China(Ph.D thesis):1-124(in Chinese with English abstract).
    Caye,R.,1988.Isocubanite,a new definition of the cubic polymorph of cubanite CuFe2S3.Mineralogical Magazine,52(367):509-514.
    Chen,W.W.,Zhang,J.M.,and Ardell,A.J.,1988.Solid-state phase equilibria in the ZnS-CdS system.Materials Research Bulletin,23(11):1667-1673.
    Clark,A.H.,1970.Copper zoning in pyrite from Cerro de Pasco,Peru:further discussion.American Mineral,55:525-527.
    Cook,N.J.,Ciobanu,C.L.,Pring,A.,Skinner,W.,Shimizu,M.,and Danyushevsky,L.,2009.Trace and minor elements in sphalerite:A LA-ICPMS study.Geochimica Et Cosmochimica Acta,73(16):4761-4791.
    Cook,N.,Ciobanu,C.,George,L.,Zhu,Z.Y.,Wade,B.,and Ehrig,K.,2016.Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductivelycoupled plasma mass spectrometry:approaches and opportunities.Minerals,6(4):111.
    Craig,J.R.,and Kullerud,G.,1973.The Cu-Zn-S system.Mineralium Deposita,8(1):81-91.
    De Ronde,C.E.J,Massoth,G.J.,Baker,E.T.,and Lupton,J.E.,2003.Submarine hydrothermal venting related to volcanic arcs.Society of Economic Geologists Special Publication,10:91-109.
    Deditius,A.,Utsunomiya,S.,Reich,M.,Kesler,S.E.,Ewing,R.C.,Hough,R.,and Walshe,J.,2011.Trace metal nanoparticles in pyrite.Ore Geology Reviews,42:32-46.
    Dick,H.J.B.,Natland,J.H.,Alt,J.C.,Bach,W.,Bideau,D.and Gee,J.S.,2000.A long in situ section of the lower ocean crust:results of ODP Leg 176 drilling at the Southwest Indian Ridge.Earth&Planetary Science Letters,179(1):31-51.
    Dick,H.J.,Lin,J.,and Schouten,H.,2003.An ultraslowspreading class of ocean ridge.Nature,426(6965):405-412.
    Einaudi,M.T.,1968.Copper zoning in pyrite from Cerro de Pasco,Peru.American Mineral,53:1748-1752.
    Fan,Xianke,Dong,Yongguan,Qin,Jihua,Zhuang,Chuanlin,Yao,Chunyan and Shen Xuehua,2016.Characteristics of trace elements and S-Pb isotope composition of sulfides in Xiaotuergen copper deposit,Altay,Xinjiang,and its geological implications.Geological Review,62(2):472-490(in Chinese with English abstract).
    Fisher,R.L.,and Goodwillie,A.M.,1997.The physiography of the Southwest Indian Ridge.Marine Geophysical Research,19(6):451-455.
    Font,L.,Murton,B.J.,Roberts,S.,and Tindle,A.G.,2007.Variations in melt productivity and melting conditions along SWIR(70 E-49 E):evidence from olivine-hosted and plagioclase-hosted melt inclusions.Journal of Petrology,48(8):1471-1494.
    Fontboté,L.,Kouzmanov,K.,Chiaradia,M.,and Pokrovski,G.S.,2017.Sulfide minerals in hydrothermal deposits.Elements,13(2):97-103.
    Fouquet,Y.,Cambon,P.,Etoubleau,J.,Charlou,J.L.,Ondreas,H.,Barriga,F.J.A.S.,Cherkashov,G.,Semkova T.,Poroshina,I.,Bohn,M.,Donval,J.P.,Henry,K.,Murphy,P.,and Rouxel,O.,2010.Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization:a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit.Diversity of hydrothermal systems on slow spreading ocean ridges,American Geophysical Union.Geophysical Monograph 188,321-367.
    Fouquet,Y.,Henry,K.,Knott,R.,and Cambon,P.,1998.Geochemical Section of the TAG Hydrothermal Mound.In:Proceedings of the Ocean Drilling Program,Scientific Results,158(9):363-387.
    Franchini,M.,Mcfarlane,C.,Maydagán,L.,Reich,M.,Lentz,D.R.,Meinert,L.,and Bouhier,V.,2015.Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit,Catamarca,Argentina:Textural features and metal zoning at the porphyry to epithermal transition.Ore Geology Reviews,66(2):366-387.
    Frenzel,G.,and Ottemann,J.,1967.Eine sulfidparagenese mit kupferhaltigem Zonar-pyrit von Nukundamu/Fiji.Mineral.Deposital,307-316.
    Friedl,J.,Wagner,F.E.,and Wang,N.,1995.On the chemical state of combined gold in sulfidic ores:conclusions from M?ssbauer source experiments.Neues Jb.Neues Jahrbuch für Mineralogie-Abhandlungen,169(3):279-290.
    Fujimoto,H.,Cannat,M.,and Fujioka,K.,1999.First submersible investigations of midocean ridges in the Indian Ocean.InterRidge News,8(1):22-24.
    Gadd,M.G.,Layton-Matthews,D.,Peter,J.M.,and Paradis,S.J.,2016.The world-class Howard’s Pass SEDEX Zn-Pb district,Selwyn Basin,Yukon.Part I:trace element compositions of pyrite record input of hydrothermal,diagenetic,and metamorphic fluids to mineralization.Mineralium Deposita,51(3):319-342.
    Gao Shang,Huang Fei,Wang Yinghui and Gao Wenyuan.2016.A review of research progress in the genesis of colloform pyrite and its environmental indications.Acta Geologica Sinica(English edition),90(4):1353-1369.
    Genna,D.,and Gaboury,D.,2015.Deciphering the hydrothermal evolution of a vms system by LA-ICP-MS using trace elements in pyrite:an example from the BracemacMc Leod deposits,Abitibi,Canada,and implications for exploration.Economic Geology,110(8):2087-2108.
    George,L.L.,Cook,N.J.,and Ciobanu,C.L.,2016.Partitioning of trace elements in co-crystallized sphalerite-galenachalcopyrite hydrothermal ores.Ore Geology Reviews,77:97-116.
    Georgen,J.E.,Lin,J.,and Dick,H.J.B.,2001.Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge:effects of transform offsets.Earth&Planetary Science Letters,187(3-4):283-300.
    German,C.R.,Baker,E.T.,Mevel,C.,Tamaki,K.,and Team,T.F.S.,1998.Hydrothermal activity along the Southwest Indian Ridge.Nature,395(6701):490-493.
    Geroge,L.L.,Cook,N.J.,Crowe,B.B.P.,and Ciobanub,C.L.,2017.Prepublication:trace elements in hydrothermal chalcopyrite.Mineralogical Magazine,82(1):59-88.
    Goldfarb,M.S.,Converse,D.R.,Holland,H.D.,and Edmond,J.M.,1983.The genesis of hot spring deposits on the East Pacific Rise,21°N.Economic Geology,5:184-197.
    Gu Lianxing,Zheng Yuanchuan,Tang Xiaoqian and Wu Changzhi,2006.Structures of sulfide ores and research progress in associated metallogenic theories.Progress in Natural Science,16(2):146-159(in Chinese).
    Halbach,P.,Pracejus,B.,and Marten,A.,1993.Geology and mineralogy of massive sulphide ores from central Okinawa trough,Japan.Economic Geology,88(8):2210-2225.
    Hannington,M.D.,De Ronde,C.D.J.,and Petersen,S.,2005.Sea-floor tectonics and submarine hydrothermal systems.Economic Geology 100th Anniversary Volume,111-141.
    Hannington,M.D.,Galley,A.G.,Herzig,P.M.,and Petersen,S.,1998.Comparison of the TAG mound and stockwork complex with Cyprus type massive sulfide deposits.Proceedings of the Ocean Drilling Program Scientific Results,158:389-415.
    Hannington,M.D.,Jonasson,I.R.,Herzig,P.M.,and Petersen,S.,1995.Physical and chemical processes of seafloor mineralization at mid-ocean ridges.Seafloor hydrothermal systems:Physical,chemical,biological,and geological interactions,American Geophysical Union.Geophysical Monography,91:115-157.
    Hannington,M.D.,and Scott,S.D.,1988.Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount,Juan de Fuca Ridge.The Canadian Mineralogist,26(3):603-625.
    Hannington,M.,Jamieson,J.,Monecke,T.,and Petersen,S.,2011.The abundance of seafloor massive sulfide deposits.Geology,39(12):1155-1158.
    Haymon,R.M.,1983.Growth history of hydrothermal black smoker chimneys.Nature,301(5902):695-698.
    Haymon,R.M.,and Kastner,M.,1981.Hot spring deposits on the East Pacific Rise at 21°N:preliminary description of mineralogy and genesis.Earth and Planetary Science Letters,53(3):363-381.
    Hekinian,R.,Francheteau,J.,and Ballard,R.D.,1985.Morphology and evolution of hydrothermal deposits at the axis of the East Pacific Rise.Oceanologica acta,8(2):147-155.
    Helmy,H.M.,Shalaby,I.M.,and Rahman,H.B.A.,2014.Largescale metal zoning in a late-Precambrian skarn-type mineralization,Wadi Kid,SE Sinai,Egypt.Journal of African Earth Sciences,90(4):77-86.
    Herzig,P.M.,1988.A Mineralogical,Geochemical and Thermal Profile Through the Agrokipia“B”Hydrothermal Sulfide Deposit,Troodos Ophiolite Complex,Cyprus.Berlin:Springer Berlin Heidelberg,182-215.
    Hou Zengqian,Han Fa,Xia Linqi,Zhang Qiling,Qu Xiaoming,Li Zhenqing,Bie Fenglei,Wang Liquan,Yu Jinjie and Tang Shaohua,2003.Modern and ancient seafloor hydrothermal mineralizing process.Beijing:Geological Publishing House,430(in Chinese).
    Humphris,S.E.,Zierenberg,R.A.,Mullineaux,L.S.,and Thomson,R.E.,1995.Seafloor hydrothermal systems:physical,chemical,biological,and geological interactions.Geophysical Monograph,100(5):327-352.
    Huston,D.L.,Sie,S.H.,Suter,G.F.,Cooke,D.R.,and Both,R.A.,1995.Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits;Part I,proton microprobe analyses of pyrite,chalcopyrite,and sphalerite,and Part II,selenium levels in pyrite;comparison withδ34S values and implic.Economic Geology,90(5):1167-1196.
    Janecky,D.R.,and Jr,W.E.S.,1984.Formation of massive sulfide deposits on oceanic ridge crests:incremental reaction models for mixing between hydrothermal solutions and seawater.Geochimica Et Cosmochimica Acta,48(12):2723-2738.
    Kawasumi,S.,Chiba,H.,and Kawasumi,S.,2017.Redox state of seafloor hydrothermal fluids and its effect on sulfide mineralization.Chemical Geology,451:25-37.
    Keith,M.,Haase,K.M.,Schwarzschampera,U.,Klemd,R.,Petersen,S.,and Bach,W.,2014.Effects of temperature,sulfur,and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents.Geology,42(8):699-702.
    Keith,M.,H?ckel,F.,Haase,K.M.,Schwarz-Schampera,U.,and Klemd,R.,2016.Trace element systematics of pyrite from submarine hydrothermal vents.Ore Geology Reviews,72(11):728-745.
    Kingston Tivey,M.,1995.Modeling chimney growth and associated fluid flow at seafloor hydrothermal vent sites.Seafloor Hydrothermal Systems:Physical,Chemical,Biological,and Geological Interactions,American Geophysical Union.Geophysical Monography,91:158-177.
    Kojima,S.,and Sugaki,A.,1987.An experimental study on chalcopyritization of sphaleritet induced by hydrothermally metasomatic reactions.Mining Geology,37:373-380.
    Kojima,S.,1990.A coprecipitation experiment on intimate association of sphalerite and chalcopyrite and its bearings on the genesis of Kuroko ores.Mining Geology,40(3):147-158.
    Kojima,S.,1992.The nature of chalcopyrite inclusions in sphalerite;exsolution,coprecipitation,or"disease"?;discussion.Economic Geology,87(4):1191-1192.
    Kojima,S.,and Sugaki A,1985.Phase-relations in the Cu-Fe-Zn-S system between 500°C and 300°C under hydrothermal conditions.Economic Geology,80(1):158-171.
    Koski,R.A.,Clague D A,and Oudin E,1984.Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge.Geological Society of America Bulletin,95(8):930-945.
    Koski,R.A.,Jonasson,I.R.,and Kadko,D.C.,1994.Compositions,growth mechanisms,and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment,Juan de Fuca Ridge.Journal of Geophysical Research Solid Earth,99(B3):4813-4832.
    Large,R.R.,1992.Australian volcanic-hosted massive sulfide deposits;features,styles,and genetic models.Economic Geology,87(3):471-510.
    Large,R.R.,Huston,D.L.,McGoldrick,P.J.Ruxton,P.A.,and McArthur,G.,1989.Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and their significance for gold transport models.Economic Geology,6:520-536.
    Large,R.R.,Danyushevsky,L.,Hollit,C.,Maslennikov,V.,Meffre,S.,Gilbert,S.Bull,S.,Scott R,Emsbo,P.,Thomas,H.,Singh,B.,and Foster J,2009.Gold and trace element zonation in pyrite using a laser imaging technique:implications for the timing of gold in orogenic and CarlinStyle sediment-hosted deposits.Economic Geology,104(5):635-668.
    Large,R.R.,Halpin,J.A.,Danyushevsky,L.V.,Maslennikov,V.V.,Bull,S.W.,Long,J.A.,Gregory,D.D.,Lounejeva,E.,Lyons,T.W.,Sack,P.J.,McGoldrick,P.J.and Calver,C.R.,2014.Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution.Earth&Planetary Science Letters,389(1):209-220.
    Lepetit,P.,Bente,K.,Doering,T.,and Luckhaus,S.,2012.Crystal chemistry of Fe-containing sphalerites.Physics&Chemistry of Minerals,30(4):185-191.
    Lin,Y.,Cook,N.J.,Ciobanu,C.L.,Liu,Y.P.,Zhang,Q.,Liu,T.,Cao,W.,Yang,Y.,and Danyushevskiy,L.,2011.Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study.Ore Geology Reviews,39(4):188-217.
    Mariko,T.,1988.Compositional zoning and"chalcopyrite disease"in sphalerite contained in the Pb-Zn-quartzcalcite ore from the Mozumi deposit of the Kamioka mine,Gifu Prefecture.Mining Geology,38:393-400.
    Maslennikov,V.V.,Maslennikova,S.P.,Large,R.R.,and Danyushevsky,L.V.,2009.Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit(Southern Urals,Russia)using laser ablation-inductively coupled plasma mass spectrometry(LA-ICPMS).Economic Geology,104(8):1111-1141.
    Metz,S.,and Trefry,J.H.,2000.Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids.Geochimica Et Cosmochimica Acta,64(13):2267-2279.
    Meyzen,C.M.,Toplis,M.J.,Humler,E.,Ludden,J.N.,and Mével,C.,2003.A discontinuity in mantle composition beneath the Southwest Indian Ridge.Nature,421(6924):731-733.
    Moggl-Cecchi,V.,Cipriani,C.,Rossi,P.,Ceccato,D.,Rudello,V.,and Somacal,H.,2002.Trace element contents and distribution maps of chalcopyrite:a micro-pixe study.Periodico Di Mineralogia,71(1):101-109.
    Monecke,T.,Petersen,S.,Hannington,M.D.,Grant,H.,and Samson,I.,2016.The minor element endowment of modern sea-floor massive sulfide deposits and comparison with deposits hosted in ancient volcanic successions.Society of Economic Geologists,18:245-306.
    Mosgova,N.N.,Nenasheva,S.N.,Borodayev,Y.S.,and Tsepin,A.J.,1996.Compositional range and isomorphism of isocubanite.Geochemistry International,33(1):1-21.
    Muller,M.R.,Minshull,T.A.,and White,R.S.,1999.Segmentation and melt supply at the Southwest Indian Ridge.Geology,27(10):267-73.
    Münch Ute,Claude Lalou,Peter Halbach and Hiromi Fujimoto,2001.Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E-mineralogy,chemistry and chronology of sulfide samples.Chemical Geology,177(3):341-349.
    Nagase,T.,and Kojima,S.,1997.An SEM examination of the chalcopyrite disease texture and its genetic implications.Mineralogical Magazine,61(1):89-97.
    Nayak,B.,Halbach,P.,Pracejus,B.,and Münch,U.,2014.Massive sulfides of mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis.Ore Geology Reviews,63(63):115-128.
    Nie Xiao,Shen Junfeng,Liu Haiming,Du Baisong,Wang Shuhao,Li Jie,Xu Liwei and Wang Ran,2017.Geochemistry of pyrite from the Gangcha Gold Deposit,West Qinling Orogen,China:implications for ore genesis.Acta Geologica Sinica(English edition),91(6):2164-2179.
    Pacevski,A.,Libowitzky,E.,Zivkovic,P.,Dimitrijevic,R.,and Cvetkovic,L.,2008.Copper-bearing pyrite from the Coka Marin polymetallic deposit,Serbia:mineral inclusions or true solid-solution?Canadian Mineralogist,46(1):249-261.
    Paradis,S.,and Watkinson,D.H.,1988.Two zinc-rich chimneys from the Plume Site,Southern Juan de Fuca Ridge.Can.Mineral,26:637-654.
    Petersen,S.,Herzig,P.M.,and Hannington,M.D.,2000.Third dimension of a presently forming VMS deposit:TAGhydrothermal mound,Mid-Atlantic Ridge,26°N.Mineralium Deposita,35(2):233-259.
    Pirajno,F.,2009.Hydrothermal processes associated with meteorite impacts.Berlin:Springer,1097-1130.
    Pokrovski,G.S.,Borisova,A.Y.,and Bychkov,A.Y.,2013.Speciation and transport of metals and metalloids in geological vapors.Reviews in Mineralogy&Geochemistry,76(1):165-218.
    Qiu Bibo,Han Xiqiu,Wang Yejian,Qiu Zhongyan and Huang Kaihui,2015.Geochemistry of altered basalts from the 45.3°E~56°E segment of the Southwest Indian Ridge.Acta Mineralogica Sinica,(s1):777-778(in Chinese).
    Radcliffe,D.,and McSween,H.Y.,1970.Copper zoning in pyrite from Cerro de Pasco,Peru′:reply.American Mineralogist,55:527-528.
    Reed,M.H.,2006.Sulfide Mineral Precipitation from Hydrothermal Fluids.Atlantic Geology,61(3):95-109.
    Reich,M.,Chryssoulis,S.L.,Deditius,A.,Palacios,C.,Zú?iga,A.,Weldt,M.,and Alvear,M.,2010.“Invisible”silver and gold in supergene digenite(Cu1.8S).Geochimica Et Cosmochimica Acta,74(21):6157-6173.
    Reich,M.,Deditius,A.,Chryssoulis,S.,Li,J.W.,Ma,C.Q.,Parada,A.P.,Barra,F.,and Mittermayr,F.,2013.Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:a SIMS/EPMA trace element study.Geochimica Et Cosmochimica Acta,104(1):42-62.
    Reich,M.,Kesler,S.E.,Wang,L.M.,Ewing,R.C.,and Becker,U.,2005.Solubility of gold in arsenian pyrite.Geochimica Et Cosmochimica Acta,69(11):2781-2796.
    Reid,I.,and Jackson,H.R.,1981.Oceanic spreading rate and crustal thickness.Marine Geophysical Researches,5(2):165-172.
    Revan,M.K.,Gen?,Y.,Maslennikov,V.V.,Maslennikova,S.P.,and Large,R.R.,2014.Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt(NE Turkey).Ore Geology Reviews,63(3):129-149.
    Royer,J.Y.,Patriat,P.,Bergh,H.W.,and Scotese,C.R.,1988.Evolution of the Southwest Indian Ridge from the late Cretaceous(anomaly 34)to the middle Eocene(anomaly 20).Tectonophysics,155(1):235-260.
    Sack,R.O.,2006.Thermochemistry of sulfde mineral solutions.Reviews in Mineralogy&Geochemistry,Eos Transactions American Geophysical Union.61,265-364.
    Sangster,D.F.,and Scott,S.D.,1976.Precambrian,strata-bound,massive Cu-Zn-Pb sulfde ores of North America.Cu,Zn,Pb,and Ag Deposits.Elsevier,129-132.
    Sauter,D.,and Cannat,M.,2010.The ultraslow spreading Southwest Indian Ridge.Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges,American Geophysical Union.Geophysical Monograph 188,153-173.
    Sauter,D.,Carton,H.,Mendel,V.,Rommevaux-Jestin,C.,Schott,J.J.,and Whitechurch,H.,2004a.Ridge segmentation and the magnetic structure of the Southwest Indian Ridge(at50°30′E,55°30′E and 66°20′E):Implications for magmatic processes at ultraslow-spreading centers.Geochemistry Geophysics Geosystems,5(5):374-378.
    Sauter,D.,Mendel,V.,Rommevaux-Jestin,C.,Parson,L.M.,Fujimoto,H.,Mevel,C.,Cannat,M.,and Tamaki,K.,2004b.Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge:Evidence from TOBI side scan sonar imagery.Geochemistry,Geophysics,Geosystems,5(10):1-20.
    Sauter,D.,Cannat,M.,Meyzen,C.,Bezos,A.,Patriat,P.,and Humler,E.,2009.Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E:interaction with the crozet hotspot?.Geophysical Journal International,179(2):687-699.
    Sauter,D.,Patriat,P.,Rommevaux-Jestin,C.,Cannat,M.,and Briais,A.,2001.The Southwest Indian Ridge between 49°15′E and 57°E:focused accretion and magma redistribution.Earth&Planetary Science Letters,192(3),303-317.
    Schorr,S.,and Wagner,G.,2005.Structure and phase relations of the Zn 2 x(CuIn)1-x S 2,solid solution series.Cheminform,36(36):202-207.
    Scott,R.J.,Meffre,S.,Woodhead,J.,Gilbert,S.E.,Berry,R.F.,and Emsbo P,2009.Development of framboidal pyrite during diagenesis,low-grade regional metamorphism,and hydrothermal alteration.Economic Geology,104(8):1143-1168.
    Scott,S.D.,1983.Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments.Mineralogical Magazine,47(345):427-435.
    Scott,S.D.,and Barnes,H.L.,1971.Sphalerite geothermometry and geobarometry.Economic Geology,66(4):653-669.
    Serranti,S.,Ferrini,V.,Masi,U.,Nicoletti,M.,and Conde,L.N.,2002.Geochemical features of the massive sulfide(cu)metamorphosed deposit of arinteiro(galicia,spain)and genetic implications.Periodico Di Mineralogia,71(1):27-48.
    Seyler,M.,Cannat,M.,and Mevel,C.,2003.Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge(52 to 68 E).Geochemistry,Geophysics,Geosystems,4(2):1-33.
    Shalaby,I.M.,Stumpfl,E.,Helmy,H.M.,Mahallawi,M.M.E.,and Kamel,O.A.,2004.Silver and silver-bearing minerals at the Um Samiuki volcanogenic massive sulphide deposit,eastern desert,Egypt.Mineralium Deposita,39(5-6):608-621.
    Solomon,M.,2001.Textures of the Hellyer volcanic-hosted massive sulfide deposit,Tasmania-the aging of a sulfide sediment on the sea floor.Economic Geology,96(7):1513-1534.
    Tao,C.,Li,H.,Huang,W.,Han,X.,Wu,G.,Sun,X.,Zhou,N.,Lin,J.,He,Y.,and Zhou,J.,2011.Mineralogical and geochemical features of sulfide chimneys from the 49°39′Ehydrothermal field on the Southwest Indian Ridge and their geological inferences.Science Bulletin,56(26):2828-2838.
    Tao,C.,Li,H.,Jin,X.,Zhou,J.,Wu,T.,He,Y.,Deng,X.,Gu,C.,Zhang,G.,and Liu,W.,2014.Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge.Science Bulletin,59(19):2266-2276.
    Tao,C.,Lin,J.,Guo,S.,Chen,Y.J.,Wu,G.,Han,X.,German,C.R.,Yoerger,D.R.,Zhou,N.,Li,H.,Sun,X.,and Zhu,J.,2012.First active hydrothermal vents on an ultraslowspreading center:Southwest Indian Ridge.Geology,40(1):47-50.
    Tao,C.,Wu,G.,Ni,J.,Zhao,H.,Su,X.,Zhou,N.,Li,J.,Chen,Y.J.,Cui,R.,Deng,X.,Egorov,I.,Dobretsova,I.G.,Sun,G.,Qiu,Z.,Deng,X.,Zhou,J.,Gu,C.,Li,J.,Yang,J.,Zhang,K.,Wu,X.,Chen,Z.,Lei,J.,Huang,W.,Zhou,P.,Ding,T.,Jin,W.,Li,H.,and Lin,J.,2009,New hydrothermal fields found along the Southwest Indian Ridge during the Legs 5-7 of the Chinese DY115-20 expedition.In:Eos(Transactions,American Geophysical Union),Fall Meeting supplement,abstract OS21A-1150.
    Tivey,M.K.,1995a.The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy:Insights from modeling transport and reaction.Geochimica Et Cosmochimica Acta,59(10):1933-1949.
    Tivey,M.K.,Humphris,S.E.,Thompson,G.,Hannington,M.D.,and Rona,P.A.,1995b.Deducing patterns of fluid flow and mixing within the tag active hydrothermal mound using mineralogical and geochemical data.Journal of Geophysical Research Atmospheres,100(B7),12527-12555.
    Vaughan,D.J.,and Craig,J.R.,1978.Mineral chemistry of metal sulfides.Cambridge:Cambridge University Press,477.
    Wang,S.,Huaiming,L.,Zhai,S.,Yu,Z.,Shao,Z.,Cai,Z.,2016.Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S,southern Mid-Atlantic Ridge.Acta Oceanologica Sinica,36(2):22-34.
    Wang Yejian,2012.Comparison study of mineralization of Kairei and Edmond active hydrothermal fields in Central Indian Ridge.Zhejiang:Zhejiang University(Ph.D thesis):1-115(in Chinese with English abstract).
    Wang Yejian,Han Xiqiu,Jin Xianglong,Qiu Zhongyan and Zhu jihao,2011.Typomorphic characteristics of pyrite and its metallogenic environment of Edmond Hydrothermal Field,Central Indian Ridge.Acta Mineralogical Sinica:31(2):173-179(in Chinese with English abstract).
    Wang,G.,Wang,Z.Q.,Shi,R.,Zhang,Y.L.,and Wang,K.M.,2015.Mineralogy and isotope geochemical characteristics for Xiaozhen copper deposit,Langao County,Shaanxi province and their constraint on genesis of the deposit.Geosciences Journal,19(2):281-294.
    Wang,Y.,Han,X.,Petersen,S.,Frische,M.,Qiu,Z.and Li,H.,2017.Mineralogy and trace element geochemistry of sulfide minerals from the wocan hydrothermal field on the slowspreading Carlsberg Ridge,Indian Ocean.Ore Geology Reviews,84:1-19.
    White,R.S.,McKenzie,D.,and O'Nions,R.K.,1992.Oceanic crustal thickness from seismic measurements and rare earth element inversions.Journal of Geophysical Research:Solid Earth,97(B13):19683-19715.
    White,R.S.,Minshull,T.A.,Bickle,M.J.,and Robinson,C.J.,2001.Melt generation at very slow-spreading oceanic ridges:constraints from geochemical and geophysical data.Journal of Petrology,42(6):1171-1196.
    Winderbaum,L.,Ciobanu,C.L.,Cook,N.J.,Paul,M.,Metcalfe,A.,and Gilbert,S.,2012.Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite.Mathematical Geosciences,44(7):823-842.
    Wohlgemuth-Ueberwasser,C.C.,Viljoen,F.,Petersen,S.and Vorster,C.,2015.Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides:An in-situ LA-ICP-MS study.Geochimica Et Cosmochimica Acta,159:16-41.
    Wolfgang,B.,Banerjee,N.R.,Dick,H.J.B.and Baker,E.T.,2013.Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E.Geochemistry Geophysics Geosystems,3(7):1-14.
    Xing Bo,Zheng Wei,Ou Yangzhixia,Wu Xiaodong,Lin Weipeng and Tian Yun,2016.Sulfide microanalysis and Sisotope of the Miaoshan Cu polymetallic deposit in western Guangdong Province,and its constraints on the ore genesis.Acta Geologica Sinica,90(5):971-986(in Chinese with English abstract).
    Yang Weifang,2017.Study of hydrothermal mineralization of Duanqiao hydrothermal field in Southwest Indian Ridge.Zhejiang:Zhejiang University(Ph.D thesis):1-147(in Chinese with English abstract).
    Ye Jun,2010.Mineralization of polymetallic sulfides on ultraslow spreading Southwest Indian Ridge at 49.6°E.Beijing:University of Chinese Academy of Sciences(Ph.D thesis):1-120(in Chinese with English abstract).
    Ye,J.,Shi,X.,Yang,Y.,Li,N.,Liu,J.,and Su,W.,2012.The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49.6°E.Acta Oceanologica Sinica,31(6):72-82.
    Yuan Bo,Yu Hongjun,Yang Yaomin,Zhao Yuexia,Yang Jichao,Xu Yue,Lin Zhen and Tang Xin,2018.Zone refinement related to the mineralization process as evidenced by mineralogy and element geochemistry in a chimney fragment from the Southwest Indian Ridge at 49.6°E.Chemical Geology,482:46-60.
    Zhang Tao,Lin Jian and Gao Jinyao,2013.Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge.Science China:Earth Sciences,43(11):1834-1846(in Chinese).
    Zhang He,Cai Yuanfeng,Ni Pei and Zhang Yang,2017.The occurrence mechanism of gold in pyrite from the qiucun gold deposit in Fujian Province,China.Acta Geologica Sinica(English Edition),91(z1):61-62.
    Zierenberg,R.A.,Fouquet,Y.,Miller,D.J,Bahr,J.M.,Baker,P.A.,Bjerkgard,T.,Brunner,C.A.,Duckworth,R.C.,Gable,R.,Gieskes,J.,Goodfellow,W.D.,Groschel-Becker,H.M.,Guerin,G.,Ishibashi,J.,Iturrino,G.,James,R.H.,Lackschewitz,K.S.,Marquez,L.L.,Nehlig,P.,Peter,J.M.,Rigsby,C.A.,Schultheiss,P.,Shanks-III,W.C.,Simoneit,B.R.T.,Summit,M.,Teagle,D.A.H.,Urbat,M.,and Zuffa,G.G.,1998.The deep structure of a sea-floor hydrothermal deposit.Nature,392(6675):485-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700