用户名: 密码: 验证码:
斑岩型铜矿床成矿斑岩岩浆氧化状态研究方法综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Methods for estimating magma oxidation state of porphyry copper deposits:A review
  • 作者:张京渤 ; 安芳
  • 英文作者:ZHANG JingBo;AN Fang;State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University;
  • 关键词:地质学 ; 斑岩铜矿床 ; 岩浆氧化状态 ; 研究方法 ; 综述
  • 英文关键词:geology;;porphyry copper deposit;;magma oxidation state;;methods;;review
  • 中文刊名:KCDZ
  • 英文刊名:Mineral Deposits
  • 机构:大陆动力学国家重点实验室西北大学地质学系;
  • 出版日期:2018-10-15
  • 出版单位:矿床地质
  • 年:2018
  • 期:v.37
  • 基金:陕西省教育厅科技计划项目(批准号:14KJ1761);; 国家自然科学基金项目(批准号:41403033)的联合资助
  • 语种:中文;
  • 页:KCDZ201805009
  • 页数:13
  • CN:05
  • ISSN:11-1965/P
  • 分类号:163-175
摘要
近年来,成矿斑岩岩浆的氧化状态对斑岩铜矿床成矿潜力和成矿规模的控制作用受到了矿床学家的广泛关注。文章总结了斑岩型铜矿床成矿斑岩岩浆氧化状态的主要研究方法及各自的适用条件:(1)钛铁氧化物(钛铁矿-磁铁矿)固熔体的组成,适用于含共生岩浆成因钛铁矿-磁铁矿的斑岩体;(2)岩石中的Fe~(3+)/Fe~(2+)含量比值,适用于新鲜的熔融包裹体或未发生热液蚀变和地表风化作用的新鲜岩石;(3)黑云母中的Fe~(3+)、Fe~(2+)和Mg含量,适用于黑云母与磁铁矿和钾长石共生的岩体;(4)角闪石主量元素含量,适用于温度为550~1120℃、压力<1200 MPa、氧逸度(f(O2))为-1≤ΔNNO≤+5的钙碱性喷出岩或浅成侵入岩;(5)锆石Ce~(4+)/Ce~(3+)比值;(6)锆石EuN/EuN*比值,斑岩铜矿成矿斑岩为中酸性岩体,其中锆石普遍发育,因此被广泛用于确定岩浆氧化状态。文章还通过收集中国冈底斯成矿带、金沙江-红河成矿带、中甸岛弧成矿带、环太平洋成矿域和中亚成矿域主要斑岩铜矿床成矿斑岩岩浆氧逸度资料,讨论岩浆演化状态对斑岩型铜矿床成矿作用和成矿规模的控制作用,发现同一成矿带内含矿斑岩的氧化状态明显高于不含矿斑岩,且含矿斑岩的氧化状态与斑岩铜矿床的成矿规模具有正相关性。
        In recent years, the constraint of magma oxidation state on mineralization potential and scale of porphyry copper deposits has attracted lots of earth scientists' attentions. This paper summarized main methods for estimating magma oxidation state of porphyry copper deposits and their applied conditions. These methods are:(1) Ilmenite-magnetite oxygen barometer, which is used in the conditions that ilmenite coexists with magnetite and FeTi oxides have homogeneous chemical compositions;(2) Whole-rock Fe~(3+)/Fe~(2+)ratio, it can only be used on fresh melt inclusions or igneous rocks devoid of hydrothermal alteration or surficial weathering;(3) Biotite component,which coexists with magnetite and potassium feldspar;(4) Amphibole oxygen barometer, which is used with calcalkaline volcanic or hypabyssal intrusive rocks with temperatures of 550~1120℃, pressure of 1200 MPa, and oxygen fugacity of-1≤ ΔNNO≤+ 5;(5) Zircon Ce~(4+)/Ce~(3+)ratios, and(6) Zircon EuN/EuN*ratios, which are recently popularly used, because zircon is a common accessory mineral in intrusions related to porphyry deposits. On these bases, the magma oxidation state data of porphyry deposits in Gangdese, Jinsha river-Red river, Zhongdian island arc, Circum-Pacific and Central Asian metallogenic belts are collected to discuss the constraint of magma oxidation state on mineralization potential and scale of porphyry deposits. In most metallogenic belts, the orebearing intrusions have higher oxidation state than barren intrusions, and the higher oxidation state is also favorable to the formation of large scale porphyry copper deposit.
引文
An F,Wang J L,Zhu Y F,Wang J Q,Wei S N,Lai S C and Seitmuratove E.2015.Mineralogy and geochemistry of intrusions related to Sayak large copper deposit,Kazakhstan,Central Asian metallogenic belt:Magma nature and its significance to mineralization[J].Acta Petrologica Sinica,31(2):555-570(in Chinese with English abstract).
    Arculus R J and Delano J W.1981.Intrinsic oxygen fugacity measurements:Techniques and results for spinels from upper mantle peridotites and megacryst assemblages[J].Geochimica et Cosmochimica Acta,45(6):899-913.
    Asadi S,Moore F and Zarasvandi A.2014.Discriminating productive and barren porphyry copper deposits in the southeastern part of the Central Iranian volcano-plutonic belt,Kerman region,Iran:Areview[J].Earth-Science Reviews,138:25-46.
    Ballard J R,Palin M J and Campbell I H.2002.Relative oxidation states of magmas inferred from Ce(IV)/Ce(III)in zircon:Application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,144(3):347-364.
    Blevin P L.2004.Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia:Implications for gold-rich ore system[J].Resource Geology,54:241-252.
    Blevin P L and Chappell B W.2011.The role of magma sources,oxidation states and fractionation in determining the granite metallogeny of eastern Australia[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,83(1-2):305-316.
    Blundy J and Wood B.1994.Prediction of crystal-melt partition coefficients from elastic moduli[J].Nature,372:452-454.
    Blundy J,Mavrogenes J,Tattitch B,Sparks S and Gilmer A.2015.Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs[J].Nature Geoscience,8(3):235-240.
    Borisov A A and Shapkin A I.1990.A new empirical equation relating the Fe3+/Fe2+ratio in natural melts to composition,oxygen fugacity and temperature[J].Geochemistry International,27:111-116.
    Bornhorst T J and Rose W I.1986.Partitioning of gold in young calcalkaline volcanic rocks from Guatemala[J].Journal of Geology,94:412-418.
    Botcharnikov R E,Linnen R L,Holtz W M,Jugo P J and Berndt J.2011.High gold concentrations in sulphide-bearing magma under oxidizing conditions[J].Nature Geoscience,4:112-115.
    Buddington A F and Lindsley D H.1964.Iron-titanium oxide minerals and synthetic equivalents[J].Journal of Petrology,5:310-357.
    Burnham A D and Berry A J.2012.An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity[J].Geochimica et Cosmochimica Acta,95:196-212.
    Carroll M R and Rutherford M J.1987.The stability of igneous anhydrite:Experimental results and implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas[J].Journal of Petrology,28(5):781-801.
    Chiaradia M.2014.Copper enrichment in arc magmas controlled by overriding plate thickness[J].Nature Geoscience,7(1):43-46.
    Darken L S and Gurry R W.1945.The system iron-oxygen.I.the wustite field and related equilibria[J].American Chemical Society,67:1398-1412.
    Eugster H P and Wones D R.1962.Stability relations of the ferruginous biotite,annite[J].Journal of Petrology,3:82-125.
    Fudali R F.1965.Oxygen fugacities of basaltic and andesitic magmas[J].Geochimca et Cosmochimca Acta,29(9):1063-1075.
    Ghiorso M S and Evans B W.2008.Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygenbarometer[J].American Journal of Science,308:957-1039.
    Hamlyn P R,Keays R R,Cameron W E,Crawford A J and Waldron HM.1985.Precious metals in magnesian low-Ti lavas:Implications for metallogenesis and sulfur saturation in primary magmas[J].Geochimica et Cosmochimica Acta,49:1797-1811.
    Hanchar J M,Finch R J,Hoskin P W O,Watson E B and Cherniak D J.2001.Rare earth elements in synthetic zircon:Part 1.Synthesis,and rare earth element and phosphorous doping[J].American Mineralogist,86(5):667-680.
    Hattori K H and Keith J D.2001.Contribution of mafic melt to porphyry copper mineralization:evidence from Mount Pinatubo,Philippines,and Bingham Canyon,Utah,USA[J].Mineralium Deposita,36:799-806.
    Hou Z Q,Yang Z,Lu Y,Kemp A,Zheng Y,Li Q and Duan L.2015.Agenetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J].Geology,43(3):247-250.
    Jugo P,Luth R and Richards J.2005a.An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300°C and 1.0 GPa[J].Journal of Petrology,46:783-798.
    Jugo P,Luth R and Richards J.2005b.Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts[J].Geochimica et Cosmochimica Acta,69:497-503.
    Jugo P.2009.Sulfur content at sufide saturation in oxidized magmas[J].Geology,37:415-418.
    Kennedy G C.1948.Equilibrium between volatiles and iron oxides in igneous rocks[J].American Journal of Science,246:529-549.
    Kong D X,Xu J F and Chen J L.2016.Oxygen isotope and trace element geochemistry of zircons from porphyry copper system:Implications for Late Triassic metallogenesis within the Yidun Terrane,southeastern Tibetan Plateau[J].Chemical Geology,441:148-161.
    Kress V C and Carmichael I S E.1991.The compressibility of silicate liquids containing Fe2O3and the effect of composition,tempera ture,oxygen fugacity and pressure on their redox states[J].Contributions to Mineralogy and Petrology,108(1-2):82-92.
    Lepage L D.2003.ILMAT:An Excel worksheet for ilmenite-magnetite geothermometry and geobarometry[J].Computers and Geosciences,29:673-678.
    Liang H Y,Xie Y W,Zhang Y Q and Campbell I.2004.Formation and evolution of alkaline rocks on metallogenic control of copper deposits[J].Progress in Natural Science,14(1):118-122(in Chinese).
    Liang H Y,Campbell I H,Allen C,Sun W D,Liu C Q,Yu H X and Zhang Y Q.2006.Zircon Ce4+/Ce3+ratios and ages for Yulong orebearing porphyries in eastern Tibet[J].Mineralium Deposita,41(2):152-159.
    Ling H F.2011.Origin of hydrothermal fluids of granite-type urainium deposits:Constraints from redox conditions[J].Geological Review,57(2):193-206(in Chinese with English abstract).
    Luo M C,Wang L Q,Leng Q F and Chen W.2011.Zircon Hf isotope and Ce4+/Ce3+ratio of the monzogranite porphyry and biotite monzonitic granite in Bangpu Mo(Cu)deposit,Tibet[J].Mineral Deposits,30(2):266-278(in Chinese with English abstract).
    Mao J W,Luo M C,Xie G Q,Liu J and Wu S H.2014.Basic characteristics and new advances in research and exploration on porphyry copper deposits[J].Acta Geologica Sinica,88(12):2153-2175(in Chinese with English abstract).
    Mungall J E.2002.Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits[J].Geology,30:915-918.
    Oyarzun R,Marquez A,Lillo J,Lopez I and Rivera S.2001.Giant versus small porphyry copper deposits of Cenozoic age innorthern Chile:Adakitic versus normal calc-alkaline magmatism[J].Mineralium Deposita,36:794-798.
    Richards J P.2003.Tectono-magmatic precursors for porphyry Cu-(MoAu)deposit formation[J].Econ.Geol.,98:1515-1533.
    Richards J P and Kerrich R.2007.Special paper:Adakite-like rocks:Their diverse origins and questionable role in metallogenesis[J].Econ.Geol.,102:537-576.
    Richards J P.2009.Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere[J].Geology,37:247-250.
    Richards J P.2011.Magmatic to hydrothermal metal fluxes in convergent and collided margins[J].Ore Geology Reviews,40(1):1-26.
    Richards J P.2013.Giant ore deposits formed by optimal alignments and combinations of geological processes[J].Nature Geoscience,6(11):911-916.
    Ridolfi F,Puerini M,Renzulli A,Menna M and Toulkeridis T.2008.The magmatic feeding system of El Reventador volcano(Sub-Andean zone,Ecuador)constrained by texture,mineralogy and thermobarometry of the 2002 erupted products[J].Journal of Volcano and Geothermal Research,176(1):94-106.
    Ridolfi F,Renzulli A and Puerini M.2010.Stability and chemical equilibrium of amphibole in calc-alkaline magmas:An overview,new thermobarometric formulations and application to subduction-related volcanoes[J].Contributions to Mineralogy and Petrology,160(1):45-66.
    Sack R O,Carmichael I S E,Rivers M and Ghiorso M S.1981.Ferricferrous equilibria in natural silicate liquids at 1bar[J].Contributions to Mineralogy and Petrology,75(4):369-376.
    Sato M and Wright T L.1966.Oxygen fugacities directly measured in magmatic gases[J].Science,153(3740):1103-1105.
    Sauerzapf U,Lattard D,Burchard M and Engelmann R.2008.The titanomagnetite-ilmenite equilibrium:New experimental data and thermooxybarometric application to the crystallisation of basic to intermediate rocks[J].Journal of Petrology,49:1161-1185.
    Shen P,Hattori K,Pan H D,Jackson S and Seitmuratova E.2015.Oxidation condition and metal fertility of graniticmagmas:Zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt[J].Econ.Geol.,110:1861-1878.
    Sheshtawi Y A E,Salem A K A and Aly M M.1993.The geochemistry of ferrous biotite and petrogenesis of Wadi-El-Sheikh granitoid rocks southwestern Sinai,Egypt[J].Journal of African Earth Sciences,16(4):489-498.
    Sillitoe R H.2010.Porphyry copper systems[J].Econ.Geol.,105:3-41.
    Streck M J and Dilles J H.1998.Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith[J].Geology,26(6):523-526.
    Sun W D,Arculus R J,Kamenetsky V S and Binns R A.2004.Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,431:975-978.
    Sun W D,Liang H Y,Ling M X,Zhan M Z,Ding X,Zhang H and Fan W M.2013.The link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,103:263-275.
    Sun W D,Huang R F,Li H,Hu Y B,Zhang C C,Sun S J and Ling MX.2015.Porphyry deposits and oxidized magmas[J].Ore Geology Reviews,65:97-131.
    Sun W D,Wang J T,Zhang L P,Zhang C C,Li H,Ling M X and Liang H Y.2016.The formation of porphyry copper deposits[J].Acta Geochimica,36(1):9-15.
    Tang P,Chen Y C,Tang J X,Zheng W B,Leng Q F,Lin B and Fang X.2016.Characteristics and geological significance of biotites in Jiama porphyry deposit system,Tibet[J].Mineral Deposits,35(4):846-866(in Chinese with English abstract).
    Tang P,Tang J X,Zheng W B,Leng Q F,Lin B and Tang X Q.2017.Mineral chemistry of hydrothermal biotites from the Lakang’e porphyry Cu-Mo deposit,Tibet[J].Earth Science Frontiers,24(5):265-282(in Chinese with English abstract).
    Trail D,Watson E B and Tailby N D.2011.The oxidation state of Hadean magmas and implications for early Earth’s atmosphere[J].Nature,480:79-82.
    Trail D,Bruce Watson E B and Tailby N D.2012.Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J].Geochimica et Cosmochimica Acta,97:70-87.
    Virgo D,Luth R W,Moats M A and Ulmer G C.1988.Constraints on the oxidation state of the mantle:An electrochemical and57Fe M?ssbauer study of mantle-derived ilmenites[J].Geochimica et Cosmochimica Acta,52(7):1781-1794.
    Wang R,Richards J P,Hou Z Q,Yang Z M,Gu Z B and DuFrane S A.2014.Increasing magmatic oxidation state from paleocene to miocene in the eastern Gangdese Belt,Tibet:Implication for collisionrelated porphyry Cu-Mo±Au mineralization[J].Econ.Geol.,109:1943-1965.
    Wang R,Richards J P,Zhou L M,Hou Z Q,Stern R A,Creaser R Aand Zhu J J.2015.The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt,southern Tibet[J].Earth-Science Reviews,150:68-94.
    Watson E B and Harrison T M.1983.Zircon saturation revisited:Temperature and composition effect in a variety of crustal magmas types[J].Earth and Planetary Science Letters,64:295-304.
    Watson E B,Wark D A and Thomas J B.2006.Crystallization thermometers for zircon and rutile[J].Contributions to Mineralogy and Petrology,151(4):413-433.
    Wilkinson J J.2013.Triggers for the formation of porphyry ore deposits in magmatic arcs[J].Nature Geoscience,6(11):917-925.
    Wones D R and Eugster H P.1965.Stability of biotite:Experiment,theory and application[J].American Mineralogist,50:1228-1272.
    Xin H B and Qu X M.2008.Relative oxidation states of ore-bearing porphyries inferred from Ce(Ⅳ)/Ce(Ⅲ)ratio in zircon:Application to the porphyry copper belt at Gangdese,Tibet[J].Acta Mineralogica Sinica,28(2):152-160(in Chinese with English abstract).
    Xu L L,Bi X W,Chen Y W and Qi Y Q.2012.Zircon Ce4+/Ce3+ratios of Tongchang intrusions in Jinping County,Yunnan Province:Implications and mineralization[J].Acta Mineralogica Sinica,32(1):74-82(in Chinese with English abstract).
    Yang Z,Yang L Q,He W Y,Gao X,Liu X D,Bao X S and Lu Y G.2017.Control of magmatic oxidation state in intracontinental porphyry mineralization:A case from Cu(Mo-Au)deposits in the Jinshajiang-Red River metallogenic belt,SW China[J].Ore Geology Reviews,70:827-846.
    Yu Y F,Li Y G and Fei G C.2015.Oxygen fugacity of intrusions in Yunnan chundu porphyry copper deposit[J].Acta Mineralogica Sinica,S1:178(in Chinese).
    Yu Y F,Fei G C,Li Y G,Long X R,Tian E Y,Liu G Q,LüF M and Hua K Q.2016.Oxygen fugacity of intrusions from Lannitang porphyry copper deposit in Zhongdian island arc,Yunnan:Implications for mineralization[J].Journal of Mineralogy and Petrology,36(1):28-36(in Chinese with English abstract).
    Yue Z L,Du Y S,Cao Y,Zuo X M and Du J G.2016.Geological significance and composition characteristics of biotite in Guihuachong grandiorite,Anhui Province[J].Journal of Mineralogy and Petrology,36(2):27-33(in Chinese with English abstract).
    Zhang C C,Sun W D,Wang J T,Zhang L P,Sun S J and Wu K.2017.Oxygen fugacity and porphyry mineralization:A zircon perspective of Dexing porphyry Cu deposit,China[J].Geochimica et Cosmochimica Acta,206:343-363.
    Zhou X R.1981.Estimation of oxygen fugacity and applications in rock and mineral[J].Geology and Exploration,11:38-46(in Chinese).
    安芳,王居里,朱永峰,王建其,魏少妮,赖绍聪,Seitmuratova E.2015.中亚萨亚克矿田成矿岩体矿物学和地球化学:岩浆性质与成矿意义[J].岩石学报,31(2):555-570.
    梁华英,谢应雯,张玉泉,Campbell I.2004.富钾碱性岩体形成演化对铜矿成矿制约--以马厂箐铜矿为例[J].自然科学进展,14(1):118-122.
    凌洪飞.2011.论花岗岩型铀矿床热液来源-来自氧逸度条件的制约[J].地质论评,57(2):193-206.
    罗茂澄,王立强,冷秋锋,陈伟.2011.邦铺钼(铜)矿床二长花岗斑岩、黑云二长花岗岩锆石Hf同位素和Ce4+/Ce3+比值[J].矿床地质,30(2):266-278.
    毛景文,罗茂澄,谢桂青,刘军,吴胜华.2014.斑岩铜矿床的基本特征和研究勘查新进展[J].地质学报,88(12):2153-2175.
    唐攀,陈毓川,唐菊兴,郑文宝,冷秋锋,林彬,方向.2016.西藏甲玛斑岩矿床系统黑云母特征及其地质意义[J].矿床地质,35(4):846-866.
    唐攀,唐菊兴,郑文宝,冷秋锋,林彬,唐晓倩.2017.西藏拉抗俄斑岩铜钼矿床黑云母矿物化学特征[J].地学前缘,24(5):265-282.
    辛洪波,曲晓明.2008.西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态:来自锆石Ce(IV)/Ce(III)比值的约束[J].矿物学报,28(2):152-160.
    胥磊落,毕献武,陈佑纬,齐有强.2012.云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义[J].矿物学报,32(1):74-82.
    俞一凡,李佑国,费光春.2015.云南春都斑岩铜矿床岩体氧逸度特征[J].矿物学报,S1:178.
    俞一凡,费光春,李佑国,龙训荣,田恩源,刘国庆,吕峰明,华柯强.2016.云南中甸岛弧烂泥塘斑岩铜矿床岩体氧逸度特征及成矿意义[J].矿物岩石,36(1):28-36.
    岳紫龙,杜杨松,曹毅,左晓敏,杜静国.2016.安徽桂花冲花岗闪长斑岩中黑云母成分特征及地质意义[J].矿物岩石,36(2):27-33.
    周珣若.1981.氧逸度的估算及其在岩矿方面的应用[J].地质与勘探,11:38-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700