用户名: 密码: 验证码:
NH_4~+对次生铁矿物形成及重金属去除的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of NH_4~+ on the formation of secondary iron minerals and the removal of heavy metals
  • 作者:宋永伟 ; 王鹤茹 ; 曹艳晓 ; 朱祎涵 ; 周立祥
  • 英文作者:SONG Yong-wei;WANG He-ru;CAO Yan-xiao;ZHU Yi-han;ZHOU Li-xiang;Department of Environmental Science and Engineering, Zhongnan University of Economics and Law;Department of Environmental Engineering, Nanjing Agricultural University;
  • 关键词:NH_4~+ ; 嗜酸性氧化亚铁硫杆菌 ; 酸性矿山废水 ; 次生铁矿物 ; 重金属
  • 英文关键词:NH_4~+;;A.ferrooxidans;;acid mine drainage;;secondary iron minerals;;heavy metals
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中南财经政法大学环境科学与工程系;南京农业大学环境工程系;
  • 出版日期:2018-06-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金重点资助项目(21637003);; 湖北省自然科学基金资助项目(2016CFB289)
  • 语种:中文;
  • 页:ZGHJ201806018
  • 页数:8
  • CN:06
  • ISSN:11-2201/X
  • 分类号:118-125
摘要
研究了初始p H值、Fe~(2+)浓度、Fe/NH_4~+物质的量比对嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)体系中Fe~(2+)氧化率、总Fe沉淀率、次生铁矿物矿相的影响,并比较矿物对AMD中Cr(Ⅵ)、As(Ⅲ)的去除效果.结果表明,当NH_4~+浓度在A.ferrooxidans耐受范围内时,Fe~(2+)氧化及总Fe沉淀去除效果不受影响,表现在160,80,20mmol/L的Fe~(2+)分别在72,48,24h内被完全氧化,培养至终点时(96h)平均总Fe沉淀率分别为24.03%,19.46%,8.13%.在Fe~(2+)=160mmol/L体系中,Fe/NH_4~+=2.0、p H=2.6处理获得纯净施氏矿物;而当Fe/NH_4~+≤1.0、p H≤2.3时,次生铁矿物的合成途径开始向黄铵铁矾转移.Fe/NH_4~+=2.0的各酸性体系合成矿物对Cr(Ⅵ)、As(Ⅲ)去除能力存在显著差异,依次为p H=2.6>p H=2.3>p H=2.0.分析表明,次生铁矿物的表观结构和比表面积是影响有毒元素去除效果的主要原因.
        In this study,the influence of initial p H,Fe~(2+)concentration,molar ratio of Fe/NH_4~+on the Fe~(2+)bio-oxidation rate,total Fe deposition efficiency,and phases of secondary iron minerals in simulated AMD containing A.ferrooxidans was investigated.The Cr(Ⅵ)and As(Ⅲ)removal efficiency of different iron minerals were compared.The results indicated that under the concentration of NH_4~+was lower than that for A.ferrooxidans tolerance value,Fe~(2+)oxidation and total Fe removal through precipitation were not affected,160,80,and 20mmol/L of Fe~(2+)could be completely oxidized by A.ferrooxidans within 72,48,and 24h,and the average total Fe removal efficiency was 24.03%,19.46%,and 8.13%at the end of the experiment(96h),respectively.In addition,in initial 160mmol/L Fe~(2+)system,when the molar ratio of Fe/NH_4~+=2.0 and p H=2.6,the secondary iron mineral obtained was pure schwertmannite;when the molar ratio of Fe/NH_4~+≤1.0 and p H≤2.3,ammonium jarosite began to occur in this system.Additionally,the Cr(Ⅵ)and As(Ⅲ)removal efficiency of secondary iron minerals harvested from the Fe/NH_4~+=2.0systems differed(p H=2.6>p H=2.3>p H=2.0).The data obtained from this study demostrated that the removal efficiency of toxic elements was mainly influenced by the apparent structure and specific surface area of secondary iron minerals.
引文
[1]Wei X,Wolfe F A.Minerals and mine drainage[J].Water Environment Research,2013,85(10):1515-1547.
    [2]Vhahangwele M.A novel technology for neutralizing acidity and attenuating toxic chemical species from acid mine drainage using cryptocrystalline magnesite tailings[J].Journal of Water Process Engineering,2016,10(6):67-77.
    [3]Wu Z L,Zou L C,Chen J H,et al.Column bioleaching characteristic of copper and iron from Zijinshan sulfide ores by acid mine drainage[J].International Journal of Mineral Processing,2016,149:18-24.
    [4]Liu G W,Bai R C.Development of the acidic mining wastewater treatment technology[J].Applied Mechanics and Materials,2013,295-298:1372-1375.
    [5]Song Y W,Wang M,Liang J R,et al.High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation[J].Hydrometallurgy,2014,143(3):23-27.
    [6]Meschke K,Herdegen V,Aubel T,et al.Treatment of opencast lignite mining induced acid mine drainage(AMD)using a rotating microfiltration system[J].Journal of Environmental Chemical Engineering,2015,4(4):2848-2856.
    [7]Lee W C,Lee S W,Yun S T,et al.A novel method of utilizing permeable reactive kiddle(PRK)for the remediation of acid mine drainage[J].Journal of Hazardous Materials,2016,301:332-341.
    [8]宋永伟,赵博文,霍敏波,等.温度对嗜酸性硫杆菌活性和生物成因次生铁矿物形成的影响[J].环境科学,2013,34(8):3264-3271.
    [9]Zhu J Y,Gan M,Zhang D,et al.The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability[J].Materials Science and Engineering C,2013,33(5):2679-2685.
    [10]Schwertmann U,Bigham J M,Murad E.The first occurrence of schwertmannite in a natural stream environment[J].European Journal of Mineralogy,1995,7:547-552.
    [11]Bigham J M,Schwertmann U,Carlson L.A poorly crystallized xyhydoxysulfate of iron formed by bacterial oxidation of Fe(II)in acid mine waters[J].Geochimica et Cosmochimica Acta,1990,54:2743-2758.
    [12]Regenspurg S,G?bner A,Peiffer S,et al.Potential remobilization of toxic anions during reduction of arsenate and chromated schwertmannite by the dissimilatory Fe(III)-reducing bacterium Acidiphilium Cryptum JF-5[J].Water,Air,and Soil Pollution,2002,2(3):57-67.
    [13]Gagliano W B,Brill M R,Bigham J M,et al.Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland[J].Geochimica et Cosmochimica Acta,2004,68:2119-2128.
    [14]Regenspurg S,Brand A,Peiffer S.Formation and stability of schwertmannite in acid mining lakes[J].Geochimica et Cosmochimica Acta,2004,68:1185-1197.
    [15]Bigham J M,Nordstrom D K.Iron and aluminum hydroxysulfates from acid sulfate waters[J].Reviews in Mineralogy and Geochemistry,2000,40,351-403.
    [16]周顺桂,周立祥,黄焕忠.黄钾铁矾的生物合成与鉴定[J].光谱学与光谱分析,2004,24(9):1140-1143.
    [17]Karamanev D G.Model of the biofilm structure of Thiobacillus ferrooxidans[J].Journal of Biotechnology,1991,20(1):51-64.
    [18]Elgersma F,Witkamp G J,Van Rosmalen G M.Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite[J].Hydrometallurgy,1993,34:23-47.
    [19]Dutrizac J E.The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite[J].Hydrometallurgy,1996,42:293-312.
    [20]Gómez J M,Cantero D,Webb C.Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulphate oxidation[J].Applied Microbiology and Biotechnology,2000,54:335-340.
    [21]陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(VI)的吸附[J].中国环境科学,2006,26(1):11-15.
    [22]Gan M,Sun S G,Zheng Z H,et al.Adsorption of Cr(VI)and Cu(II)by Al PO4modified biosynthetic schwertmannite[J].Applied Surface Science,2015,356(30):986-997.
    [23]Mihone K M,Hana F,Sanda R,et al.Assessment of metal risks from different depths of jarosite tailing waste of Trep?a Zinc Industry,Kosovo based on BCR procedure[J].Journal of Geochemical Exploration,2015,148:161-168.
    [24]Zhang S L,Jia S Y,Yu B,et al.Sulfidization of As(V)-containing schwertmannite and its impact on arsenic mobilization[J].Chemical Geology,2016,420(20):270-279.
    [25]刘奋武,高诗颖,王敏,等.镁离子对氧化亚铁硫杆菌生物合成次生铁矿物的影响[J].中国环境科学,2014,34(3):713-719.
    [26]刘奋武,高诗颖,崔春红,等.Ca2+对酸性硫酸盐环境中次生铁矿物合成的影响[J].中国环境科学,2015,35(4):1142-1148.
    [27]Dutrizac J E,Kaiman S.Synthesis and properties of jarosite-type compounds[J].Canadian Mineralogist,1976,14:151-158.
    [28]Dutrizac J E.The effectiveness of jarosite species for precipitating sodium jarosite[J].Journal of the Minerals,Metals and Materials Society,1999,51(12):30-32.
    [29]邓志明,周正华.湿法炼锌浸出沉铁探讨[J].湖南有色金属,2002,18(1):23-25,45.
    [30]宋永伟,陈婷,王鹤茹,等.阴离子对Acidithiobacillus ferrooxidans氧化活性及次生铁矿物形成影响[J].中国环境科学,2018,38(2):574-580.
    [31]Bigham J M,Schwertmann U,Traina S J,et al.Schwertmannite and the chemical modeling of iron in acid sulfate waters[J].Geochimica et Cosmochimica Acta,1996,60(12):2111-2121.
    [32]Gramp J P,Sandy Jones F,Bigham J M,et al.Monovalent cation concentrations determine the types of Fe(III)hydroxysulfate precipitates formed in bioleach solutions[J].Hydrometallurgy,2008,94(1-4):29-33.
    [33]Liao Y,Zhou L,Liang J,et al.Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different p H condition[J].Materials Science and Engineering C,2009,29(1):211-215.
    [34]宋永伟,王鹤茹,梁剑茹,等.嗜酸性氧化亚铁硫杆菌介导的次生铁矿物形成的影响因素分析:p H、Fe2+、Fe/Na[J].环境科学学报,2017,DOI:10.13671/j.hjkxxb.2017.0360.
    [35]柏双友,梁剑茹,周立祥.一价阳离子和水溶性有机质对生物沥浸中次生铁矿物形成的影响[J].矿物学报,2011,31(1):118-125.
    [36]柏双友,梁剑茹,周立祥.Fe SO4-K2SO4-H2O体系中Fe/K摩尔比对生物成因羟基硫酸铁矿物质量的影响及环境意义[J].环境科学学报,2010,30(8):1601-1607.
    [37]Dold B.Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction(DXRD)[J].Applied Geochemistry,2003,18(10):1531-1540.
    [38]Loan M,Richmond W R,Parkinson G M.On the crystal growth of nanoscale schwertmannite[J].Journal of Crystal Growth,2005,275(1/2):1875-1881.
    [39]李浙英,梁剑茹,柏双友,等.生物成因与化学成因施氏矿物的合成、表征及其对As(Ⅲ)的吸附[J].环境科学学报,2011,31(3):460-467.
    [40]刘奋武,卜玉山,田国举.温度与p H对生物合成施氏矿物在酸性环境中溶解行为及对Cu2+吸附效果的影响[J].环境科学学报,2013,33(9):2445-2451.
    [41]J?nsson J,Persson P,Sj?berg S,et al.Schwertmannite precipitated from acid mine drainage:phase transformation,sulfate release and surface properties[J].Applied Geochemistry,2005,20:179-191.
    [42]王长秋,马生凤,鲁安怀.黄钾铁矾类矿物沉淀去除Cr(VI)的初步研究[J].矿物岩石地球化学通报,2006,25(4):335-338.
    [43]Bigham J M,Carlson L,Murad E,et al.Schwertmannite,a new iron oxyhydroxysulfate from Pyhasalmi,Finland,and other localities[J].Acta Archaeologica,1994,80(393):190-192.
    [44]Bai S Y,Xu Z H,Wang M,et al.Both initial concentrations of Fe(II)and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments[J].Materials Sciences and Engineering C,2012,32(8):2323-2329.
    [45]Kedar N G,Katsutoshi I.Adsorptive separation of arsenate and arsenite anions from aqueous medium byusing orange waste[J].Water Research,2003,37:4945-4953.
    [46]廖岳华.施氏矿物的生物合成及去除水中砷的效果与机理研究[D].南京:南京农业大学,2008.
    [47]Regenspurg S,Peiffer S.Arsenate and chromate incorporation in schwertmannite[J].Applied Geochemistry,2005,20:1226-1239.
    [48]Duquesne K,Lebrun S.Immobilization of arsensite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage[J].Applied and Environmental Microbiology,2003,69(10):6165-6173.
    [49]Jain A,Raven K P,Loeppert R H.Arsenite and Arsenate adsorption on ferrihydrite:surface charge reduction and net OH-release stoichiometry[J].Environmental Science&Technology,1999,33:1179-1184.
    [50]?ubrt J,Bohá?ek J,?tengl V,et al.Uniform particles with a large surface area formed by hydrolysis of Fe2(SO4)3 with urea[J].Materials Research Bulletin,1999,34(6):905-914.
    [51]孙红福,赵峰华,丛志远,等.在我国发现的Schwertmannite矿物及其特征[J].矿物学报,2006,26(1):38-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700