用户名: 密码: 验证码:
高功率微波等离子体放电研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High power microwave plasma discharge
  • 作者:常超
  • 英文作者:Chao Chang;Advanced Interdiscriplinary Technology Research Center,National Innovation Institute of Defense Technology;Key Laboratory of Physical Electronics and Devices of the Ministry of Education,Xi'an Jiaotong University;
  • 关键词:高功率微波 ; 强电磁场击穿 ; 等离子体 ; 输出窗放电 ; 大气放电 ; 金属放电
  • 英文关键词:high-power microwave;;intense electromagnetic breakdown;;plasma;;window discharge;;air discharge;;metal dis-charge
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:国防科技创新研究院前沿交叉中心;西安交通大学物理电子与器件教育部重点实验室;
  • 出版日期:2018-05-20
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:国家自然科学基金(11622542和51677145)资助
  • 语种:中文;
  • 页:KXTB201814012
  • 页数:14
  • CN:14
  • ISSN:11-1784/N
  • 分类号:144-157
摘要
高功率微波(HPM)在科研、民用和国防领域具有广阔的应用前景.HPM具有瞬时高峰值功率达到数十亿瓦、脉宽从几十至数百纳秒的特点,随着HPM技术向高峰值功率、长脉冲和高重复频率发展,强电磁场击穿已成为限制HPM产生、传输及辐射系统功率容量的主要因素,是HPM技术进步面临的巨大技术挑战之一.本文综述了近20年来HPM输出窗真空及大气击穿、金属表面击穿等方面的国内外主要研究进展:击穿机理方面,国内外已对基本物理过程进行了定性描述,基本建立了二次电子倍增、表面气体释放及等离子体雪崩的动理学模型,但缺乏定量描述、实验数据支撑和等离子体能谱与密度的时空诊断.周期性表面、谐振磁场、表面氟化等物理和化学新方法已经成功运用到抑制击穿、提高功率容量的技术中,但离实用化还有差距.
        High-power microwave(HPM) has broad applications in scientific research,civil and military community.HPM has the character of peak power of tens of Giga-Watt and the pulse width from tens of to hundreds of nanosecond.The intense electromagnetic breakdowns in the HPM generation,transmission and radiation systems,seriously limit the HPM systematic power capacity,and become the bottle neck of the HPM technology-development and the international technical challenge.In this paper,the recent developments of intense electromagnetic breakdown at vacuum and air sides of output window and on metal surfaces are reviewed and discussed.To understand the breakdown mechanism at window,several multipactor dynamic models are developed,especially involving electron-neutral collision and ionization in the desorbed gas layer,analytically obtaining the influence of desorption gas on multipactor saturation,and space charge field and potential distribution above dielectric surface formed by multipactor and plasma.By diagnosing the time-and space-evolution optical emissions,the mechanisms of nano-second microwave-driven discharges near the dielectric/vacuum and dielectric/air interface were discussed.For breakdown at the dielectric/vacuum interface,multipactor and plasma developing in a thin layer of several millimeters above interface,revealing intense ionization concentrated in a desorbed high-pressure layer.For breakdown at the dielectric/air interface,nonlinear positive feedback of formation of a space-charge microwave sheath near the dielectric surface,accelerated by the normal components of the microwave field,significantly enhances the local-field amplitude and hence ionization near the dielectric surface.The mechanism and methods of using magnetic field satisfying specific amplitude and direction perpendicular to Erf x Edc to suppress microwave multipactor were theoretically studied and experimental demonstrated.The methods of the external resonant magnetic field have been demonstrated by proof-of principle S-band large power experiments to significantly improve the power capacity by 9 times.The Halbach-like magnets to generate the transverse homogeneous B-field in a large scale was designed to suppress multipactor,and the window breakdown threshold was significantly enhanced at multi-Giga-watt.The methods of periodic surface profiles on suppressing microwave multipactor were discussed.The three-dimensional periodic ripple profile with each unit of rotational symmetric surface is proposed and theoretically and experimentally demonstrated to suppress multipactor for arbitrary electromagnetic mode with any polarization.In theoretical aspect,basic physics courses are described qualitatively,the basic models of secondary electron multipator,gas desorption and plasma avalance are established,but lack of quantitive results and experimental diagnostic of plasma energy and density.The physical and chemical methods of periodici surface,resonant magnet,and surface fluorination are successfully used in suppressing breakdown and improving the power capacity,but there is distance away from practical application.
引文
1 Robert J B,Edl S.High-Power Microwave Sources and Technologies(in Chinese).Beijing:Tsinghua University Press,2005.27-29,424-431[Robert J B,Edl S.高功率微波源与技术.《高功率微波源与技术》翻译组,译.北京:清华大学出版社,2005.27-29,424-431]
    2 Zhou C M,Liu G Z,Liu Y G,et al.High-Power Microwave Sources(in Chinese).Beijing:Atomic Energy Press,2007[周传明,刘国治,刘永贵,等.高功率微波源.北京:原子能出版社,2007]
    3 James B,John A S,Edl S.High-Power Microwave(in Chinese).Beijing:National Defence Industry Press,2009[James B,John A S,Edl S.高功率微波.江伟华,张弛译.北京:国防工业出版社,2009]
    4 Sergei D K,Ivan K,Sergey L,et al.Decimeter-band frequency-tunable sources of high-power microwave pulses.Laser Part Beams,2003,21:175-185
    5 Chang C.Breakdown Physics in High-Power Microwave Systems(in Chinese).Beijing:Science Press,2016[常超.高功率微波系统中的击穿物理.北京:科学出版社,2016]
    6 Kishek R A,Lau Y Y.Multipactor discharge on a dielectric.Phys Rev Lett,1998,80:193-196
    7 Kishek R A,Lau Y Y,Ang L K,et al.Multipactor discharge on metals and dielectrics:Historical review and recent theories.Phys Plasmas,1998,5:2120-2126
    8 Ang L K,Lau Y Y,Kishek R A,et al.Power deposited on a dielectric by multipactor.IEEE Trans Plasma Sci,1998,26:290-295
    9 Kim H C,Verboncoeur J P.Transition of window breakdown from vacuum multipactor discharge to rf plasma.Phys Plasmas,2006,13:123506-6
    10 Kim H C,Verboncoeur J P,Lau Y Y.Invited paper:Modeling RF window breakdown:from vacuum multipactor to RF Plasma.IEEETrans Dielectr Electr Insu,2007,14:766-773
    11 Cheng G,Liu L,Liu Y,et al.Monte Carlo study of the single-surface multipactor electron discharge on a dielectric.IEEE Trans Plasma Sci,2009,37:1968
    12 Vaughan J.Multipactor.IEEE Trans Electron Devices,1988,35:1172-1180
    13 Chang C,Liu G Z,Tang C X,et al.The influence of desorption gas to high power microwave window multipactor.Phys Plasmas,2008,15:093508
    14 Zhang P,Lau Y Y,Franzi M,et al.Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas.Phy Plasmas,2011,18:1172
    15 Valfells A,Verbonceour J P,Lau Y Y.Space charge effects on multipactor on a dielectric.IEEE Trans Plasma Sci,2000,28:529-536
    16 Chang C,Liu G Z,Tang C X,et al.Space charge shielding on dielectric multipactor.Phys Plasmas,2009,16:053506
    17 Chang C,Liu G Z,Zhu X X,et al.Improved model for window breakdown at low pressure.Phys Plasmas,2009,16:033505
    18 Chang C,Shao H,Chen C H,et al.Single and repetitive short-pulse high-power microwave window breakdown.Phys Plasmas,2010,17:053301
    19 Cai L B,Wang J G.Numerical simulation of high power microwave breakdown on medium surface(in Chinese).J Phys,2009,58:3268[蔡利兵,王建国.介质表面高功率微波击穿的数值模拟.物理学报,2009,58:3268]
    20 Cai L B,Wang J G,Zhu X Q.Numerical Simulation of High Power Microwave Breakdown on Medium Surface Under Different Pressure(in Chinese).High Power Laser Part Beams,2010,22:2363-2368[蔡利兵,王建国,朱湘琴.不同气压下介质表面高功率微波击穿的数值模拟.强激光与粒子束,2010,22:2363-2368]
    21 Cai L B,Wang J G.Numerical simulation of gas release in high power microwave breakdown on medium surface(in Chinese).J Phys,2011,60:025217[蔡利兵,王建国.介质表面高功率微波击穿中释气现象的数值模拟研究.物理学报,2011,60:025217]
    22 Cai L B,Wang J G,Zhang D H,et al.Self-consistent simulation of the initiation of the flashover discharge on vacuum insulator surface.Phys Plasmas,2012,19:073516
    23 Wang J G,Cai L B,Zhu X Q,et al.Numerical simulations of high power microwave dielectric interface breakdown involving outgassing.Phys Plasmas,2010,17:063503
    24 Dong Y,Dong Z W,Zhou Q H,et al.The particle simulation of the influence of gas release on dielecteic flashover(in Chinese).J Phys,2014,63:027901[董烨,董志伟,周前红,等.释气对介质沿面闪络击穿影响的粒子模拟.物理学报,2014,63:027901]
    25 Dong Y,Dong Z W,Zhou Q H,et al.The method of simulation the ionization parameter particle of the surface flashover fluid model(in Chinese).J Phys,2014,63:067901[董烨,董志伟,周前红,等.沿面闪络流体模型电离参数粒子模拟确定方法.物理学报,2014,63:067901]
    26 Dong Y,Zhou Q H,Dong Z W,et al.Particle simulation of high power microwave dielectric breakdown mechanism(in Chinese).High Power Laser Part Beams,2013,25:950-958[董烨,周前红,董志伟,等.高功率微波沿面闪络击穿机制粒子模拟.强激光与粒子束,2013,25:950-958]
    27 Dong Y,Dong Z W,Zhou Q H,et al.The influence of high power microwave and material characteristic parameters on the flashover and breakdown of the surface(in Chinese).High Power Laser Part Beams,2013,25:5[董烨,董志伟,周前红,等.高功率微波及材料特性参数对沿面击穿的影响.强激光与粒子束,2013,25:5]
    28 Hao X W,Song B P,Zhang G J.The research progress on the breakdown phenomenon of high power microwave dielectric window(in Chinese).High Power Laser Part Beams,2012,24:16-23[郝西伟,宋佰鹏,张冠军.真空高功率微波介质窗表面击穿破坏现象的研究进展.强激光与粒子束,2012,24:16-23]
    29 Hao X W,Song B P,Zhang G J.PIC-MCC Simulation for HPM Multipactor discharge on dielectric surface in vacuum.Plasma Sci Technol,2011,13:682
    30 Qiu S,Hao X W,Zhang G J,et al.Tree-like breakdown phenomena of dielectric window under x-band high power microwave in vacuum.IEEE Trans Dielectr Electr Insul,2010,17:1070-9878
    31 Hao X W,Zhang G J,Qiu S,et al.Investigation on dielectric window treelike breakdown and suppression under HPM in vacuum.IEEETrans Plasma Sci,2010,38:1403
    32 Neuber A,Krompholz H,Butcher M,et al.The role of outgassing in surface flashover under vacuum.IEEE Trans Plasma Sci,2000,28:1593-1598
    33 Neuber A,Dickens J,Hemmert D,et al.Window breakdown caused by high-power microwaves,IEEE Trans Plasma Sci,1998,26:296-303
    34 Saito Y,Matuda N,Anami S,et al.Breakdown of alumina RF windows.IEEE Trans Electr Insul,1989,24:1029-1032
    35 Michizono S,Saito Y,Yamaguchi S,et al.Dielectric materials for use as output window in high-power klystrons.IEEE Trans Electr Insul,1993,28:692-701
    36 Chang C,Zhu M,Verboncoeur J,et al.Enhanced window breakdown dynamics in a nanosecond microwave tail pulse.Appl Phys Lett,2014,104:253504
    37 Cheng G,Liu L.Temporal evolution of multipactor electron discharge on a dielectric under excitation of high-power microwave.IEEETrans Plasma Sci,2011,39:1067-1074
    38 Chang C,Huang H J,Liu G Z,et al.The effect of grooved surface on dielectric multipactor.J Appl Phys,2009,105:1593
    39 Chang C,Liu G Z,Huang H J,et al.Suppressing high-power microwave dielectric multipactor by the sawtooth surface.Phys Plasmas,2009,16:083501
    40 Chang C,Liu G Z,Fang J Y,et al.Field distribution,HPM multipactor and plasma discharge on the periodic triangular surface.Laser Part Beams,2010,28:185-193
    41 Chang C,Liu G,Tang C,et al.Review of recent theories and experiments for improving high-power microwave window breakdown thresholds.Phys Plasmas,2011,18:055502
    42 Li S,Chang C,Wang J G,et al.Tracking multiple generation and suppression of secondary electrons on periodic triangular surface.Phys Plasmas,2013,20:1172-1180
    43 Chen C H,Chang C,Liu W Y,et al.Improving the microwave window breakdown threshold by using a fluorinated,periodically patterned surface.J Appl Phys,2013,114:766-1406
    44 Dong Y,Dong Z W,Yang W Y,et al.The dielectric surface grooves inhibit the secondary electron multiplication monte-carlo simulation(in Chinese).High Power Laser Part Beams,2013,25:399-406[董烨,董志伟,杨温渊,等.介质面刻槽抑制二次电子倍增蒙特卡罗模拟,强激光与粒子束,2013,25:399-406]
    45 Cheng G X,Cai D,Hong Z Q.Variation in time lags of vacuum surface flashover utilizing a periodically grooved dielectric.IEEE Trans Dielectr Electrl Insul,2013,20:1942-1950
    46 Zhang H B,Yang J H,Cheng G X.The secondary electron multiplier effect of high-power microwave output window of groove structure(in Chinese).High Power Laser Part Beams,2013,25:1189-1194[张慧博,杨建华,程国新.刻槽结构高功率微波输出窗次级电子倍增效应.强激光与粒子束,2013,25:1189-1194]
    47 Cheng G X,Cheng X B,Yang J,et al.The optical characteristics of the vacuum surface flashover of the groove insulator(in Chinese).High Power Laser Part Beams,2013,25:1205-1210[程国新,程新兵,杨杰,等.刻槽绝缘子真空表面闪络光学特性.强激光与粒子束,2013,25:1205-1210]
    48 Zhang X,Wang Y,Fan J J.The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon.Phys Plasmas,2014,21:092101
    49 Chang C,Liu Y S,Verboncoeur J,et al.The effect of periodic wavy profile on suppressing window multipactor under arbitrary electromagnetic mode.Appl Phys Lett,2015,106:014102
    50 Ye M,He Y N,Hu S G,et al.Suppression of secondary electron yield by micro-porous array structure.J Appl Phys,2013,113:7
    51 Fan Z,Chang C,Sun J,et al.Experimental demonstration of improving resonant-multipactor threshold by three-dimensional wavy surface.Appl Phys Lett,2017,111:123503
    52 Ye M,He N Y,Hu S G,et al.Investigation into anomalous total secondary electron yield for micro-porous Ag surface under oblique incidence conditions.J Appl Phys,2013,114:104905
    53 Li Y,Cui W Z,Zhang N,et al.Three-dimensional simulation method of multipactor in micro-wave components for high-power space application.Chin Phys,2014,B23:048402
    54 Li Y,Cui W Z,Wang H G.Simulation investigation of multipactor in metal components for space application with an improved secondary emission model.Phys Plasmas,2015,22:053108
    55 Cui W Z,Li Y,Yang J,et al.An efficient multipaction suppression method in microwave components for space application(in Chinese).Chin Phys B,2016,6:569-574[崔万照,李韵,杨晶,等.一种有效多分量抑制方法在微波成分的空间应用.中国物理B,2016,6:569-574]
    56 Li Y,Ye M,He Y N,et al.Surface effect investigation on multipactor in microwave components using the EM-PIC method.Phys Plasmas,2017,24:113505
    57 Chang C,Liu G,Tang C,et al.Suppression of high-power microwave multipactor by resonant magnetic field.Appl Phys Lett,2010,96:111502
    58 Chang C,Fang J Y,Zhang Z Q,et al.Experimental verification of improving high-power microwave window breakdown thresholds by resonant magnetic field.Appl Phys Lett,2010,97:141501
    59 Chang C,Liu Y S,Ouyang X P,et al.Demonstration of Halbach-like magnets on improving microwave window capacity at Giga-Watt leve.Appl Phys Express,2014,7:097301
    60 Cheng G X,Liu L.Electromagnetic particle-in-cell verification of improving high-power microwave window breakdown thresholds by resonant magnetic field.App Phys Lett,2013,102:243506
    61 Cai L B,Wang J G,Zhu X Q.Suppression of multipactor discharge on a dielectric surface by an external magnetic field.Phys Plasmas,2011,18:7
    62 Cai L B,Wang J G,Zhu X Q,et al.The influence of magnetic field on secondary electron multiplier effect on medium surface(in Chinese).Acta Phys Sin,2012,61:075101[蔡利兵,王建国,朱湘琴,等.磁场对介质表面次级电子倍增效应的影响.物理学报,2012,61:075101]
    63 Cai L B,Wang J G.The effect of microwave magnetic field and oblique incidence on secondary electron multiplication(in Chinese).Acta Phys Sin,2010,59:1143-1147[蔡利兵,王建国.微波磁场和斜入射对次级电子倍增的影响,物理学报,2010,59:1143-1147]
    64 Dong Y,Dong Z W,Zhou Q H,et al.Two kinds of external magnetic fields inhibit the secondary electron multiplication of the dielectric surface(in Chinese).High Power Laser Part Beams,2013,25:2653-2658[董烨,董志伟,周前红,等.两种外磁场形式对介质面次级电子倍增的抑制,强激光与粒子束,2013,25:2653-2658]
    65 Gould L,Roberts L W.Breakdown of air at microwave frequencies.J Appl Phys,1956,27:1162-1170
    66 Felsenthal P,Proud J M.Nanosecond-pulse breakdown in gases.Phys Rev,1965,139:1796-1804
    67 Felsenthal P.Nanosecond-pulse microwave breakdown in air.J Appl Phys,1966,37:4557-4560
    68 Tetanbaum S J,Macdonald A D.Pulsed Microwave Breakdown of Air from 1 to 1000 Torr.J Appl Phys,1971,42:5871-5872
    69 Sullivan C A,Destler W W,Rodgers J,et al.Short-pulse high-power microwave propagation in the atmosphere.J Appl Phys,1988,63:5288-5292
    70 Mulbrandon M J,Chen J,Palmadesso P J,et al.A numerical solution of the Boltzmann equation for high-powered short pulse microwave breakdown in nitrogen.Phys Fluids B,1989,1:2507-2515
    71 Bollen W M,Yee C L,Ali A W,et al.High-power microwave energy coupling to nitrogen during breakdown.J Appl Phys,1982,54:101-106
    72 Yee J H,Mayhall D J,Sieger G E.Modeling the Interaction of intense electromagnetic pulses with gaseous media.IEEE trans Electromagn C,1992,34:189-196
    73 Khanaka G H,Yee J H,Mayhall D J.Modeling the Propagation of long,intense microwave pulses in mixtures of air and SF6.IEEETrans Plasma Sci,1990,18:210-213
    74 Ali A W.Nanosecond air breakdown parameters for electron and microwave beam propagation.Laser Part Beams,1988,6:105-117
    75 Woo W,De Groot J S.Microwave absorption and plasma heating due to microwave breakdown in the atmosphere.Phys Fluids,1984,27:475-487
    76 Raizer Y P.Gas Discharge Physics.Berlin:Springer Press,1991
    77 Anderson D,Lisak M.Breakdown in air-filled microwave waveguides during pulsed operation.J Appl Phys,1984,56:1414-1419
    78 Lbfgren M,Anderson D,Lisak M,et al.Breakdown-induced distortion of high-power microwave pulse in air.Phys Fluids,1991,3:3528-3532
    79 Udiljak R,Anderson D,Lisak M,et al.Improved model for multipactor in low pressure gas.Phys Plasmas,2004,11:5022-5031
    80 Liu G Z,Liu J Y,Huang W H,et al.A study of high power microwave air breakdown.Chin Phys Soc,2000,9:757-760
    81 Zhou D F,Yu D J,Ning H,et al.Distribution of High-Power Microwave Atmospheric Breakdown Area(in Chinese).High Power Laser Part Beams,2014,26:063026[周东方,余道杰,宁辉,等.高功率微波大气击穿区域分布.强激光与粒子束,2014,26:063026]
    82 Zhou D F,Yu D J,Yang J H,et al.Theoretical and experimental study of high power microwave single pulse atmospheric breakdown based on atmospheric model(in Chinese).Acta Phys Sin,2013,62:014207[周东方,余道杰,杨建宏,等.基于混合大气模型的高功率微波单脉冲大气击穿理论与实验研究.物理学报,2013,62:014207]
    83 Yang Y M,Yuan C W,Qian B L.Gas breakdown driven by L band short-pulse high-power microwave.Phys Plasmas,2012,19:122101
    84 Wang H,Meng L,Liu D,et al.Rescaling of microwave breakdown theory for monatomic gases by particle-in-cell/Monte Carlo simulations.Phys Plasmas,2013,20:122102
    85 Qiu F,Yan E Y,Meng F B,et al.Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure.Phys Plasmas,2015,22:073506
    86 Zhao G,Yan E Y,Chen C Y,et al.Analysis and experiment of high-power microwave atmospheric breakdown threshold(in Chinese).High Power Part Beams,2013,25:111-114[赵刚,闫二艳,陈朝阳,等.高功率微波大气击穿阈值分析及实验.强激光与粒子束,2013,25:111-114]
    87 Zhang C,Tarasenko V F,Shao T,et al.Generation of supershort avalanche electron beams in SF6.Laser Part Beams,2014,32:331-341
    88 Zhao P C,Liao C,Lin W B,et al.Numerical studies of the high power microwave breakdown in gas using the fluid model with a modified electron energy distribution function.Phys Plasmas,2011,18:102111
    89 Zhao P C,Liao C,Yang D,et al.Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas.Chin Phys B,2014,23:055101
    90 Zhao P C,Feng J,Liao C.Breakdown in air produced by high power microwaves.IEEE Trans Plasma Sci,2014,42:1560-1566
    91 Zhao P C,Guo L X,Shu P P.Interaction of high-power microwave with air breakdown plasma at low pressure.Phys Plasmas,2016,23:092105
    92 Zhao P C,Guo L X.Numerical simulations of air breakdown by microwave with two orthogonal electric fields.IEEE Trans Plasma Sci,2018,46:489-493
    93 Zhao P C,Chang C,Guo L X,et al.Effects of pressure and incident field on visible light intensity from microwave nitrogen breakdown.Phys Plasmas,2018,25:022104
    94 Krile J,Neuber A,Dickens J,et al.Imaging of dielectric surface flashover in atmospheric conditions.IEEE Trans Plasma Sci,2005,33:270-271
    95 Chang C,Verboncoeur J,Wei F L,et al.Nanosecond discharge at the interfaces of flat and periodic ripple surfaces of dielectric window with air at varied pressure.IEEE Trans Dielectr Electr Insul,2017,24:1
    96 Chang C,Li Y D,Verboncoeur J,et al.Suppressing double-metal-surface resonant multipactor by three dimensional wavy.Phys Plasmas,2017,24:040702
    97 Chang C,Wu C,Pu Y P,et al.Diagnostic of ultrafast temporal plasma evolution in high-power microwave discharge.J Appl Phys,2017,121:213301
    98 Chang C,Verboncoeur J,Guo M N,et al.Ultrafast high power microwave window breakdown:Nonlinear and post-pulse effects.Physl Rev E,2014,90:063107
    99 Chang C,Liu C L,Chen C H,et al.The influence of ions and the induced secondary emission on the nanosecond high gradient microwave breakdown at metal surface.Phys Plasmas,2015,22:06351
    100 Chang C,Guo L T,Liu C L,et al.Nanosecond spapshots of high-power microwave discharge in waveguides.IEEE Trans Plasma Sci,2015,43:1887
    101 Song W,Chen C H,Zhang L G,et al.A dual-resonant reflector in powerful relativistic backward wave oscillator.Phys Plasma,2011,18:063105
    102 Song W,Sun J,Song Z M,et al.Suppressing RF breakdown of powerful backward wave oscillator by field redistribution.AIP Adv,2012,2:012118
    103 Cao Y B,Song Z M,Wu P,et al.Effective suppression of pulse shortening in a relativistic backward wave oscillator.Phys Plasma,2017,24:033109
    104 Cao Y B,Sun J,Teng Y,et al.A powerful reflector in relativistic backward wave oscillator.Phys Plasma,2014,21:093106
    105 Zhang J,Jin Z X,Yang J H,et al.Recent advance in long-pulse HPM sources with repetitive operation in S-,C-and X-bands.IEEETrans Plasma Sci,2011,39:1438-1445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700