用户名: 密码: 验证码:
水泵水轮机导叶卡门涡数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Karman Vortex of Pump Turbine Wicket Gate
  • 作者:刘晶石 ; 姜铁良 ; 庞立军 ; 卜良峰
  • 英文作者:LIU Jingshi;JIANG Tieliang;PANG Lijun;BU Liangfeng;State Key Laboratory of Hydropower Equipment (Harbin Institute of Large Electrical Machinery);Harbin Electric Machinery Limited;
  • 关键词:水泵水轮机 ; 导叶 ; 卡门涡 ; 数值模拟
  • 英文关键词:pump turbine;;wicket gate;;Karman vortex;;numerical simulation
  • 中文刊名:DJDJ
  • 英文刊名:Large Electric Machine and Hydraulic Turbine
  • 机构:水力发电设备国家重点实验室(哈尔滨大电机研究所);哈尔滨电机厂有限责任公司;
  • 出版日期:2018-01-15
  • 出版单位:大电机技术
  • 年:2018
  • 期:No.256
  • 基金:400MW级大型抽水蓄能机组水泵水轮机及其附属设备关键技术问题研究(820-99-1501)
  • 语种:中文;
  • 页:DJDJ201801014
  • 页数:4
  • CN:01
  • ISSN:23-1253/TM
  • 分类号:75-78
摘要
利用数值模拟方法,模拟水泵水轮机不同工况下,导叶出水边的卡门涡现象,揭示导叶下游侧流场涡量分布、导叶出水边附近卡门涡流动状态和流场脱流等。提取监测点速度变化曲线和导叶壁面垂直流向合力变化曲线,通过数据处理,获得水轮机工况和水泵工况,导叶出水边卡门涡频率分别是84.9Hz和53.3Hz。通过对比分析,证明利用经验公式计算得到的卡门涡频率存在较大误差,而数值模拟方法具有较高计算精度。研究结果对水泵水轮机导叶设计、避免发生卡门涡共振问题具有一定指导意义。
        Karman vortex phenomenon near downstream side of wicket gate of pump turbineis simulated under different operating condition, by using numerical simulation method. Vorticity distribution, flow condition of Karman vortex, and flow separation behind wicket gate are revealed. Velocity curve of monitoring point andcurve of force on wicket gate perpendicular to flow directionare obtained, and Karman vortex frequency of wicket gate under turbine and pump operating condition are 84.9 Hz and 53.3 Hz respectively. It is proved that Karman vortex frequency obtained by using theoretical formula for flow around circular cylinder is not accurate, while numerical simulation method has higher accuracy.The research shows great significance inpump turbine wicket gate design and avoiding vibration induced by Karman vortex.
引文
[1]LI H,UMNER D.Vortex shedding from two finite circular cylinders in a staggered configuration[J].Journal of Fluids and Structures,2009,25(3):479-505.
    [2]SUMNER D,RICHARDS M D,AKOSILE O O.Strouhal number data for two staggered circular cylinders[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(6-7):859-871.
    [3]PENG B H,MIAU J J,BAO F,et al.Performance of vortex shedding from a circular cylinder with a slit normal to the stream[J].Flow measurement and Instrumentation,2012,25:54-62.
    [4]丁林,张力,杨仲卿.高雷诺数时分隔板对圆柱涡致振动的影响[J].机械工程学报,2013,49(14):133-139.
    [5]KHALEDI H A,ANDERSSON H I.On vortex shedding from a hexagonal cylinder[J].Physics Letters A,2011,375(45):4007-4021.
    [6]LAYEK G C,MIDYA C,GUPTA A S.Influences of suction and blowing on vortex shedding behind a square cylinder in a channel[J].International Journal of Non-Linear Mechanics,2008,43(9):979-984.
    [7]LIU Zhigang,KOPP G A.A numerical study of geometric effects on vortex shedding from elongated bluff bodies[J].Journal of Wind Engineering and Industrial Aerodynamics,2012,101:1-11.
    [8]李启章.大朝山电站转轮叶片的卡门涡共振[J].水电站机电技术,2005,28(4):76-79.
    [9]高忠信,唐澍,梁贺志.水轮机固定导叶和活动导叶后的卡门涡频率研究[J].水动力学研究与进展,2005,20(6):729-735.
    [10]刘晶石,姜铁良,庞立军,等.水轮机过流部件出水边夹角对卡门涡频率的影响[J].机械工程学报,2017,53(4):176-183.
    [11]MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):269-289.
    [12]庞立军,吕桂萍,钟苏,等.水轮机固定导叶的涡街模拟与振动分析[J].机械工程学报,2011,47(22):159-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700