用户名: 密码: 验证码:
机场水泥混凝土道面水膜厚度试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Water Film Thickness of Airport Cement Concrete Pavement
  • 作者:李光元 ; 王祎祚 ; 洪传平 ; 张泽垚 ; 邓鹏
  • 英文作者:LI Guang-yuan;WANG Yi-zuo;HONG Chuan-ping;ZHANG Ze-yao;DENG Peng;School of Aeronautics and Astronautics Engineering,Air Force Engineering University;
  • 关键词:道路工程 ; 水膜厚度 ; 模拟降雨试验 ; 水泥混凝土道面 ; 回归模型 ; Minitab
  • 英文关键词:road engineering;;depth of water film;;rainfall simulation experiment;;cement concrete pavement;;regression model;;Minitab
  • 中文刊名:GLJK
  • 英文刊名:Journal of Highway and Transportation Research and Development
  • 机构:空军工程大学航空航天工程学院;
  • 出版日期:2018-02-15
  • 出版单位:公路交通科技
  • 年:2018
  • 期:v.35;No.276
  • 基金:陕西省自然科学基金项目(AKJ12B018)
  • 语种:中文;
  • 页:GLJK201802002
  • 页数:7
  • CN:02
  • ISSN:11-2279/U
  • 分类号:12-18
摘要
针对雨天飞机在有水膜覆盖的水泥混凝土道面上滑跑时,易发生滑水现象引发交通事故的问题,利用人工降雨模拟试验,获得了水泥混凝土道面在3种不同降雨强度、5种不同排水长度及5种不同坡度变化下的水膜厚度试验数据。采用极差分析法,得到了水膜厚度影响因素的主次顺序。利用Minitab软件对试验数据进行回归分析,建立了水泥混凝土道面水膜厚度计算模型,并使用模型得到了不同平面尺寸道面在达到NASA试验水膜厚度时对应的降雨强度值。结果表明,在影响水膜厚度的3个因素中,排水长度起主要作用,降雨强度次之,道面坡度作用最小;3个影响因素均与水膜厚度显著相关,其中路表水膜厚度随道面排水长度的增大而明显增大,随降雨强度的增大而增大,随道面坡度的增大先迅速减小,然后减小趋势变缓;在2.90 mm/min的降雨强度下,60 m宽双面坡水泥混凝土机场跑道边缘水膜厚度达到4.09 mm,200 m宽度的飞机停机坪边缘达到NASA试验水膜厚度7.62 mm;以咸阳机场二期工程为例,绘制了在降雨强度1.954 mm/min下,指廊间停机坪的水膜厚度等值线图,其中机坪中部左右两端位置的水膜厚度预测值超过12 mm,与2.03 mm/min实际降雨强度下,停机坪该位置实测结果 13.8 mm及14.6 mm相吻合,说明计算模型可靠度高,可用于指导工程实践。
        Aiming at the problem that when a plane runs on a cement concrete pavement covered with water film in a rainy day,the phenomenon of water skiing is apt to cause a traffic accident,by artificial rainfall simulation test,the experimental data of surface water film thickness of cement concrete pavement under3 rainfall intensities,5 drainage lengths and 5 slope gradients are obtained.By range analysis method,the order of influencing factors of water film thickness is obtained.After regression analysis of the test data by using Minitab software,a calculation model of water film thickness of cement concrete pavement surface is established,and the corresponding rainfall intensity values of different plane sized pavements when reaching the thickness of NASA test water film are obtained by using the model.The result shows that(1) The drainage length plays the main role in the 3 factors which affect the water film thickness,the second is the rainfall intensity,and the effect of the pavement surface slope is the least.(2) All the 3 influencing factors are significantly related to the water film thickness,the water film thickness of pavement surface significantly increases with the increase of drainage length,increases with rainfall intensity,decreases rapidly and then decreases slowly with the increase of pavement surface gradient.(3) At the rainfall intensity of 2.90 mm/min,the water film thickness of the edge of the 60 m wide double-sided slope cement concrete airport runwayreached 4.09 mm,and the water film thickness of the edge of the 200 m wide apron reached the NASA test water film thickness of 7.62 mm.(4) Taking Xianyang Airport Phase II Project for example,the contour map of the water film thickness between the apron corridors under the heavy rainfall intensity of 1.954 mm/min is drawn.The predicted thickness of water film at both sides on the middle part of the apron is more than12 mm,which is consistent with the measured results of 13.8 mm and 14.6 mm under the actual rainfall intensity of 2.03 mm/min.It indicates that the computational model is highly reliable and can be used in engineering practice.
引文
[1]季天剑,高玉峰,陈荣生.轿车轮胎动力滑水分析[J].交通运输工程学报,2010,10(5):58-60.JI Tian-jian,GAO Yu-feng,CHEN Rong-sheng.Dynamic Hydroplaning Analysis of Car Tire[J].Journal of Traffic and Transportation Engineering,2010,10(5):58-60.
    [2]杨建,王国林,周海超,等.仿生非光滑花纹沟对轮胎抗滑水性能的影响[J].华中科技大学学报:自然科学版,2015,43(2):21-25.YANG Jian,WANG Guo-lin,ZHOU Hai-chao,et al.Study on Influence of Bionic Non-smooth Pattern Groove on Tire Anti-hydroplaning Performance[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2015,43(2):21-25.
    [3]徐绯,李亚南,高向阳,等.机场污染跑道飞机轮胎的溅水问题[J].航空学报,2015,36(4):1177-1184.XU Fei,LI Ya-nan,GAO Xiang-yang,et al.Water Sprays Produced by Aircraft Tyres Running in Contaminated Runway[J].Acta Aeronautica Et Astronautica Sinica,2015,36(4):1177-1184.
    [4]DREHER R C,HORNE W B.Phenomena of Pneumatic Tire Hydroplaning[J].Skidding,1963,34(2):34-37.
    [5]王国林,金梁.轮胎滑水的CFD计算方法研究[J].计算力学学报,2012,29(4):594-598.WANG Guo-lin,JIN Liang.Study on Computational Methods of Tire Hydroplaning Using CFD[J].Chinese Journal of Computational Mechanics,2012,29(4):594-598.
    [6]季天剑.降雨对轮胎与路面附着系数的影响[D].南京:东南大学,2004.JI Tian-jian.Impact of Rainfall on Tire and Road Surface Friction Coefficient of Adhesion[D].Nanjing:Southeast University,2004.
    [7]罗京,刘建蓓,王元庆.路面水膜厚度预测模型验证试验[J].中国公路学报,2015,28(12):57-63.LUO Jing,LIU Jian-bei,WANG Yuan-qing.Validation Test on Pavement Water Film Depth Prediction Model[J].China Journal of Highway and Transport,2015,28(12):57-63.
    [8]ROSS N F,RUSSAM K.The Depth of Rain Water on Road Surfaces[J].Depth,1968,67(4):23-27.
    [9]ANDERSON J A.Depth of Rain Water on Road Surface[J].Highways and Transportation,1995,42(5):45-49.
    [10]GALLAWAY B M,SCHILLER R E,ROSE J G.The Effects of Rainfall Intensity,Pavement Cross Slope,Surface Texture,and Drainage Length on Pavement Water Depth[J].Multiple Regression Analysis,1900,82(3):56-59.
    [11]WAMBOLD J C,HENRY J J,HEGMON R R.Evaluation of Pavement Surface Texture Significance and Measure Techniques[J].Wear,1983,83(2):351-368.
    [12]周奇,岑国平,张亮,等.变雨强人工模拟降雨自动控制系统设计与试验[J].排灌机械工程学报,2012,30(4):473-478.ZHOU Qi,CEN Guo-ping,ZHANG Liang,et al.Design and Test of Automatic Control System of Artificially Simulating Rainfall with Variable Intensity[J].Journal of Drainage and Irrigation Machinery Engineering,2012,30(4):473-478.
    [13]周奇,岑国平,张亮,等.基于Lab VIEW的人工模拟降雨自动控制系统[J].水利水电科技进展,2011,31(3):47-56.ZHOU Qi,CEN Guo-ping,ZHANG Liang,et al.Autocontrol System for Artificial Rainfall Simulation Based on Lab VIEW[J].Advances in Science and Technology of Water Resources,2011,31(3):47-56.
    [14]吴建军,袁成松,周曾奎,等.短时强降雨对能见度的影响[J].气象科学,2010,30(2):274-278.WU Jian-jun,YUAN Cheng-song,ZHOU Zeng-kui,et al.Impact of Short Term Heavy Rainfall on the Monitoring and Forecast of Sudden Visibility Descent[J].Scientia Meteorologic Sinica,2010,30(2):274-278.
    [15]GJB 1578—92,机场道面水泥混凝土配合比设计技术标准[S].GJB 1578—92,Technical Standard for Airport Pavement Cement Concrete Cix Design[S].
    [16]GJB 2264—1995,军用机场水泥混凝土道面使用质量评定标准[S].GJB 2264—1995,Evaluation Standard of Maintenance Management for Cement Concrete Pavement of Military Airfield[S].
    [17]任露泉.试验设计及其优化[M].北京:科学出版社,2009.REN Lu-quan.Design of Experiment and Its Optimization[M].Beijing:Science Press,2009.
    [18]李光元.机场地势设计[M].北京:人民交通出版社,2014.LI Guang-yuan.Airport Ground Design[M].Beijing:China Communications Press,2014.
    [19]何正风.MATLAB概率与数理统计分析[M].北京:机械工业出版社,2013.HE Zheng-feng.MATLAB Probability and Analysis of Mathematical Statistics[M].Beijing:China Machine Press,2013.
    [20]洪楠.MINITAB统计分析教程[M].北京:电子工业出版社,2007.HONG Nan.The Tutorial of MINITAB Statistical Analysis[M].Beijing:Publishing House of Electronics Industry,2007.
    [21]蔡靖,王永繁,李岳.基于轮组效应湿滑跑道飞机轮胎-水膜相互作用研究[J].科学技术与工程,2015,15(11):116-124.CAI Jing,WANG Yong-fan,LI Yue.Research on Aircraft Tyres-water Film Interaction on the Wet Pavement Based on Wheel Set of Aircrafts[J].Science Technology and Engineering,2015,15(11):116-124.
    [22]滕旭秋,王海峰,文华.基于动量原理的大坡度沥青路面动水压力计算及影响因素分析[J].计算力学学报,2016,33(2):257-262.TENG Xu-qiu,WANG Hai-feng,WEN Hua.Calculation and Influence Factors Analysis for Hydrodynamic Pressure of Asphalt Pavement with Large Slope Based on Momentum Theorem[J].Chinese Journal of Computation Mechanics,2016,33(2):257-262.
    [23]毕旭,程龙,姚东升,等.西安城区暴雨雨型分析[J].安徽农业科学,2015,43(35):295-297.BI Xu,CHENG Long,YAO Dong-sheng,et al.Analysis on Urban Rainstorm Pattern of Xi'an[J].Journal of Anhui Agricultural Sciences,2015,43(35):295-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700