用户名: 密码: 验证码:
Delta机器人动力学建模与弹性误差分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics modeling and elastic error analysis of delta robot
  • 作者:陈君杰 ; 李攀磊 ; 韩威 ; 许杨剑 ; 王效贵
  • 英文作者:CHEN Jun-jie;LI Pan-lei;HAN Wei;XU Yang-jian;WANG Xiao-gui;School of Mechanical Engineering,Zhejiang University of Technology;
  • 关键词:Delta机器人 ; 有限元方法 ; 弹性动力学
  • 英文关键词:delta robot;;finite element method(FEM);;elastic dynamics
  • 中文刊名:JDGC
  • 英文刊名:Journal of Mechanical & Electrical Engineering
  • 机构:浙江工业大学机械工程学院;
  • 出版日期:2018-01-20
  • 出版单位:机电工程
  • 年:2018
  • 期:v.35;No.275
  • 基金:国家自然科学基金资助项目(51375448)
  • 语种:中文;
  • 页:JDGC201801007
  • 页数:5
  • CN:01
  • ISSN:33-1088/TH
  • 分类号:39-43
摘要
针对Delta机器人运动过程中因弹性变形导致的误差问题,基于有限元理论对其弹性动力学问题建立了数学模型并进行了研究。根据机构特点,将机器人的各构件分别划分为刚性体与弹性体,形成了一个刚柔结合的系统,并充分考虑机构中平行四边形机构的运动协调关系,推导出了各构件的运动协调矩阵,由此装配出了系统的弹性动力学方程,在此基础上,采用Newmark积分方法对系统方程进行了求解,最后据此分析了Delta并联机器人杆件截面尺寸对其运动过程中弹性误差的影响。研究结果表明:增加驱动杆截面的尺寸时,其弯曲刚度随之增加,可以减少机器人弹性变形;而从动杆截面的尺寸增加时会因为机构自重增加导致变形增大。
        Aiming at the problem of elastic deformation in Delta robot motion,the elastic dynamic model was established based on the finite element theory.According to characteristics of the structure,the components of the robot were divided into rigid parts and flexible parts,respectively,which consist of a rigid-flexible coupling system.The motion relation of the parallelogram structure was fully considered,and the motion compatible matrix of each component was deduced.Then the elastic dynamic equation of the system was obtained,on which was based,the influence of the cross-sectional dimension of Delta parallel robot's rods on the elasticity error in motion was analyzed.The results indicate that the bending stiffness increases with the increase of the cross section size of the drive rod,elastic deformation of the robot can be reduced.And the self – weight increases with the increase of the cross section size of the driven rod,which makes the deformation greater.
引文
[1]CLAVEL R,A fast robot with parallel geometry[C].Proc.Int.symposium.on Industrial Robots,Lausanne:Ci Nii,1988.
    [2]计时鸣,黄希欢.工业机器人技术的发展与应用综述[J].机电工程,2015,32(1):1-13.
    [3]冯李航,张为公,龚宗洋,等.Delta系列并联机器人研究进展与现状[J].机器人,2014(3):375-384.
    [4]PIRAS G,CLEGHORN W L,MILLS J K.Dynamic finiteelement analysis of a planar high-speed,high-precision parallel manipulator with flexible links[J].Mechanism&Machine Theory,2005,40(7):849-862.
    [5]刘善增,朱真才,余跃庆,等.空间刚柔耦合并联机构系统的频率特性分析[J].机械工程学报,2011,47(23):39-48.
    [6]韩亚锋,马履中,吴伟光,等.Delta并联机器人弹性动力学研究[J].农业机械学报,2011,42(10):197-202.
    [7]KUO Y L.Mathematical modeling and analysis of the Delta robot with flexible links[J].Computers&Mathematics with Applications,2016,71(10):1973-1989.
    [8]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [9]韩敬虎,俞经虎.食品检测咀嚼机器人工作空间研究[J].轻工机械,2016,34(3):1-4.
    [10]熊艳梅,杨延栋.码垛机器人运动学分析与仿真[J].机械,2015(12):62-66.
    [11]巴特.有限元分析中的数值方法[M].北京:科学出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700