用户名: 密码: 验证码:
金属-电介质纳米核壳结构的零背向散射特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Zero-backward scattering by Metallo-Dielectric core-shell nanostructures
  • 作者:李艳 ; 许坤 ; 丁佩 ; 杜银霄 ; 陈雷明 ; 曾凡光 ; 陈卓 ; 王振林
  • 英文作者:LI Yan;XU Kun;DING Pei;DU YinXiao;CHEN LeiMing;ZENG FanGuang;CHEN Zhuo;WANG ZhenLin;School of Science, Zhengzhou University of Aeronautics;Henan Key Laboratory of Aeronautical Material and Application Technology;School of Physics, Nanjing University;
  • 关键词:Mie散射 ; 零背向散射 ; 电磁共振 ; 纳米核壳结构
  • 英文关键词:Mie scattering;;zero-backward scattering;;electric and magnetic resonance;;core-shell nanostructure
  • 中文刊名:JGXK
  • 英文刊名:Scientia Sinica(Physica,Mechanica & Astronomica)
  • 机构:郑州航空工业管理学院理学院;河南省航空材料与应用技术重点实验室;南京大学物理学院;
  • 出版日期:2017-08-01
  • 出版单位:中国科学:物理学 力学 天文学
  • 年:2017
  • 期:v.47
  • 基金:国家自然科学基金(编号:11404291,61274012,51472221);; 航空科学基金(编号:2014ZF55013,2015ZF55013);; 河南省高校科技创新人才支持计划(编号:17HASTIT016);; 河南省科技创新杰出人才(编号:164200510006)资助项目
  • 语种:中文;
  • 页:JGXK201708010
  • 页数:12
  • CN:08
  • ISSN:11-5848/N
  • 分类号:89-100
摘要
本文基于Mie散射理论,设计并研究了具有高定向、可调谐零背向散射特性的"金属-低介电-高介电"纳米核壳结构.分析了低介电层的厚度和折射率对偶极电、磁共振位置及强度的影响,发现将偶极电和磁共振在光谱上调节到重合,满足第一Kerker条件,可以实现零背向散射和显著增强的前向散射.进一步说明通过改变核壳结构的内核厚度和外半径或高介电层的折射率,能够实现零背向散射波长的可调谐.研究结果将对设计基于零背向散射的纳米结构和器件有重要的指导意义.
        Based on the Mie theory, we propose and investigate a "metal(M)-low-permittivity(LP)-high-permittivity(HP)"core-shell nanoparticle that possesses the high directional zero-backward scattering characteristics. We analyze the effect of the LP layer on the wavelength and strength of the electric or magnetic dipolar resonance, and reveal that the zero-backward scattering and dramatically enhanced forward scattering are easy to be obtained by modulating the thickness and refractive index of the middle LP layer, which can engineer the dipolar electric and magnetic modes in the M-LP-HP core-shell nanoparticles to coincide spectrally with the same strength, thus satisfying the first Kerker condition of zero backward scattering. We also demonstrate that the zero-backward scattering can be tuned over a wide range from the near-infrared to visible by varying the metal core size and the outer radius of the HP shell or by changing the refractive index of the HP shell. Our results can provide a scientific direction for designing the nanostructures and devices based on the zero-backward scattering.
引文
1 Bohren C F,Huffman D R.Absorption and Scattering of Light by Small Particles.New York:Wiley,1983
    2 Argyropoulos C,Chen P Y,Monticone F,et al.Nonlinear plasmonic cloaks to realize giant all-optical scattering switching.Phys Rev Lett,2012,108:263905
    3 Monticone F,Argyropoulos C,AlùA.Layered plasmonic cloaks to tailor the optical scattering at the nanoscale.Sci Rep,2012,2:912
    4 Monticone F,Argyropoulos C,AlùA.Multilayered plasmonic covers for comblike scattering response and optical tagging.Phys Rev Lett,2013,110:113901,arXiv:1210.4802
    5 Hsu C W,Zhen B,Qiu W,et al.Transparent displays enabled by resonant nanoparticle scattering.Nat Commun,2014,5:3152
    6 Kerker M,Wang D S,Giles C L.Electromagnetic scattering by magnetic spheres.J Opt Soc Am,1983,73:765-767
    7 Liu W,Miroshnichenko A E,Neshev D N,et al.Broadband unidirectional scattering by magneto-electric core-shell nanoparticles.ACS Nano,2012,6:5489-5497
    8 Liu W,Zhang J,Lei B,et al.Ultra-directional forward scattering by individual core-shell nanoparticles.Opt Express,2014,22:16178-16187,arXiv:1405.0665
    9 Naraghi R R,Sukhov S,Dogariu A.Directional control of scattering by all-dielectric core-shell spheres.Opt Lett,2015,40:585-588
    10 Geffrin J M,García-Cámara B,Gómez-Medina R,et al.Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere.Nat Commun,2012,3:1171
    11 Li Y,Wan M,Wu W,et al.Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles.Sci Rep,2015,5:12491
    12 Ni Y X,Gao L,Miroshnichenko A E,et al.Controlling light scattering and polarization by spherical particles with radial anisotropy.Opt Express,2013,21:8091-8100
    13 Novotny L,Van Hulst N.Antennas for light.Nat Photon,2011,5:83-90
    14 King N S,Knight M W,Large N,et al.Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface.Nano Lett,2013,13:5997-6001
    15 García-Cámara B,Moreno F,González F,et al.Light scattering by an array of electric and magnetic nanoparticles.Opt Express,2010,18:10001-10015
    16 Kabashin A V,Evans P,Pastkovsky S,et al.Plasmonic nanorod metamaterials for biosensing.Nat Mater,2009,8:867-871
    17 Rodriguez S R K,Bernal Arango F,Steinbusch T P,et al.Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles.Phys Rev Lett,2014,113:247401
    18 Atwater H A,Polman A.Plasmonics for improved photovoltaic devices.Nat Mater,2010,9:205-213
    19 Hancu I M,Curto A G,Castro-López M,et al.Multipolar interference for directed light emission.Nano Lett,2014,14:166-171
    20 Sheikholeslami S N,Garcia-Etxarri A,Dionne J A.Controlling the interplay of electric and magnetic modes via fano-like plasmon resonances.Nano Lett,2011,11:3927-3934
    21 Staude I,Miroshnichenko A E,Decker M,et al.Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks.ACS Nano,2013,7:7824-7832
    22 Kuznetsov A I,Miroshnichenko A E,Fu Y H,et al.Magnetic light.Sci Rep,2012,2:492,arXiv:1205.1610
    23 Shi L,Harris J T,Fenollosa R,et al.Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region.Nat Commun,2013,4:1904
    24 Zywietz U,Evlyukhin A B,Reinhardt C,et al.Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses.Nat Commun,2014,5:3402
    25 García-Etxarri A,Gómez-Medina R,Froufe-Pérez L S,et al.Strong magnetic response of submicron Silicon particles in the infrared.Opt Express,2011,19:4815-4826,arXiv:1005.5446
    26 Gómez-Medina R.Electric and magnetic dipolar response of germanium nanospheres:Interference effects,scattering anisotropy,and optical forces.J Nanophoton,2011,5:053512
    27 Paniagua-Domínguez R,López-Tejeira F,Marqués R,et al.Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials.New J Phys,2011,13:123017,arXiv:1106.2045
    28 Person S,Jain M,Lapin Z,et al.Demonstration of zero optical backscattering from single nanoparticles.Nano Lett,2013,13:1806-1809
    29 Fu Y H,Kuznetsov A I,Miroshnichenko A E,et al.Directional visible light scattering by silicon nanoparticles.Nat Commun,2013,4:1527
    30 Liu W,Miroshnichenko A E,Oulton R F,et al.Scattering of core-shell nanowires with the interference of electric and magnetic resonances.Opt Lett,2013,38:2621-2624
    31 Johnson P B,Christy R W.Optical constants of the noble metals.Phys Rev B,1972,6:4370-4379
    32 Fan X,Zheng W,Singh D J.Light scattering and surface plasmons on small spherical particles.Light Sci Appl,2014,3:e179
    33 Liu Z,Li Z,Liu Z,et al.High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces.Adv Funct Mater,2015,25:5428-5434
    34 Cheng H,Chen S,Yu P,et al.Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial.Appl Phys Lett,2013,103:223102
    35 Cheng H,Chen S,Yu P,et al.Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips.Appl Phys Lett,2013,103:203112
    36 Cheng H,Chen S,Yu P,et al.Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces.Adv Opt Mater,2015,3:1744-1749

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700