用户名: 密码: 验证码:
Atomic-scale models of dislocation cor
详细信息   ntent/74/3/381.full">在线全文   ntent/74/3/381.full.pdf">PDF全文下载
  • journal_title:Mineralogical Magazine
  • Contributor:A. M. Walker ; P. Carrez ; P. Cordier
  • Publisher:Mineralogical Society of Great Britain and Ireland
  • Date:2010-
  • Format:text/html
  • Language:en
  • Identifier:10.1180/minmag.2010.074.3.381
  • journal_abbrev:Mineralogical Magazine
  • issn:0026-461X
  • volume:74
  • issue:3
  • firstpage:381
  • section:Review
摘要

Recent advances in computer simulation at the atomic scale have made it possible to probe the structure and behaviour of the cores of dislocations in minerals. Such simulation offers the possibility to understand and predict the dislocation-mediated properties of minerals such as mechanisms of plastic deformation, pipe diffusion and crystal growth. In this review the three major methods available for the simulation of dislocation cores are described and compared. The methods are: (1) cluster-based models which combine continuum elastic theory of the extended crystal with an atomistic model of the core; (2) dipole models which seek to cancel the long-range elastic displacement caused by the dislocation by arranging for the simulation to contain several dislocations with zero net Burgers vector, thus allowing a fully periodic super-cell calculation; and (3) the Peierls-Nabarro approach which attempts to recast the problem so that it can be solved using only continuum-based methods, but parameterizes the model using results from atomic-scale calculations. The strengths of these methods are compared and illustrated by some of the recent studies of dislocations in mantle silicate minerals. Some of the unresolved problems in the field are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700