用户名: 密码: 验证码:
Petrophysical properties of saprolites from the Oak Ridge Integrated Field Research Challenge site, Tennessee
详细信息   在线全文   PDF全文下载
摘要

At the Oak Ridge Integrated Field Research Challenge site, near Oak Ridge, Tennessee, the shallow saprolitic aquifer is contaminated by nitric acid, uranium, and metals originating from the former S3 settling ponds. To interpret low-frequency geophysical methods used to image contaminant plumes, we have characterized the petrophysical properties of three representative saprolite core samples. Their hydraulic conductivity ranges from <mml:math display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>7</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>10−7 to <mml:math display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mi mathvariant="normal">m</mml:mi><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">s</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>10−6  m s−1 in agreement with field data. Complex conductivity measurements, in the frequency range of 1 mHz to 45 kHz, were performed with NaCl solutions with electrical conductivities in the range <mml:math display="inline"><mml:mrow><mml:mn>5</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>5×10−3 to <mml:math display="inline"><mml:mrow><mml:mn>2.35</mml:mn><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>2.35  S m−1, a range representative of field conditions. The electrical conductivity data were well reproduced with a simple linear conductivity model between the saprolite conductivity and the pore water conductivity. The conductivity plots were used to estimate the formation factor (the cementation exponent was about <mml:math display="inline"><mml:mrow><mml:mn>2.2</mml:mn><mml:mo>±</mml:mo><mml:mn>0.3</mml:mn></mml:mrow></mml:math>2.2±0.3) and the surface conductivity (<mml:math display="inline"><mml:mrow><mml:mn>0.007</mml:mn><mml:mo>−</mml:mo><mml:mspace linebreak="goodbreak"></mml:mspace><mml:mn>0.040</mml:mn><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>0.007−0.040  S m−1). The magnitude of the surface conductivity depended on the degree of weathering and therefore on the amount of smectite and mixed layer (illite-smectite) clays present in the saprolite. The chargeability of the core samples was in the range of <mml:math display="inline"><mml:mrow><mml:mn>20</mml:mn><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mtext>to</mml:mtext><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mn>800</mml:mn><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mi>mV</mml:mi><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">V</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>20 to 800  mV V−1 and is strongly dependent on the salinity. We also performed streaming potential measurements with the same pore fluid composition as that used for the complex conductivity measurements. We found an excess of movable electrical charges on the order of 100 to <mml:math display="inline"><mml:mrow><mml:mn>500</mml:mn><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>500  C m−3 in agreement with previous investigations connecting the movable excess charge density to permeability. The zeta potential was in the range of <mml:math display="inline"><mml:mrow><mml:mo form="prefix">−</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:math>−10 to <mml:math display="inline"><mml:mrow><mml:mo form="prefix">−</mml:mo><mml:mn>20</mml:mn><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mi>mV</mml:mi></mml:mrow></mml:math>−20 mV independent on the salinity. The electrical measurements were consistent with an average cation exchange capacity in the range of 1.4 to <mml:math display="inline"><mml:mrow><mml:mn>11</mml:mn><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:mi>cmol</mml:mi><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mi>kg</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>11  cmol kg−1 and a specific surface area on the order of 4000 to about 30,000 <mml:math display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo> </mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mi>kg</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>m2 kg−1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700