用户名: 密码: 验证码:
Development of a reactive transport code MC-CEMENT ver. 2 and its verification using 15-year in situ concrete/clay interactions at the Tournemire URL
详细信息   ttp://claymin.geoscienceworld.org/content/48/2/185.full">在线全文   ttp://claymin.geoscienceworld.org/content/48/2/185.full.pdf">PDF全文下载
  • journal_title:Clay Minerals
  • Contributor:T. Yamaguchi ; M. Kataoka ; T. Sawaguchi ; M. Mukai ; S. Hoshino ; T. Tanaka ; F. Marsal ; D. Pellegrini
  • Publisher:Mineralogical Society of Great Britain and Ireland
  • Date:2013-05-01
  • Format:text/html
  • Language:en
  • Identifier:10.1180/claymin.2013.048.2.03
  • journal_abbrev:Clay Minerals
  • issn:0009-8558
  • volume:48
  • issue:2
  • firstpage:185
  • section:Alteration and migration studies in underground rock laboratories (URLs) and natural analogues
摘要

Highly alkaline environments induced by cement-based materials are likely to cause the physical and/or chemical properties of the bentonite buffer materials in radioactive waste repositories to deteriorate. Assessing long-term alteration of concrete/clay systems requires physicochemical models and a number of input parameters. In order to provide reliability in the assessment of the long-term performance of bentonite buffers under disposal conditions, it is necessary to develop and verify reactive transport codes for concrete/clay systems. In this study, a PHREEQC-based, reactive transport analysis code (MC-CEMENT ver. 2) was developed and was verified by comparing results of the calculations with in situ observations of the mineralogical evolution at the concrete/argillite interface. The calculation reproduced the observations such as the mineralogical changes in the argillite limited to within 1 cm in thickness from the interface, formation of CaCO3 and CSH, dissolution of quartz, decrease of porosity in the argillite and an increase in the concrete. These agreements indicate a possibility that models based on lab-scale (∼1 year) experiments can be applied to longer time scales although confidence in the models is necessary for much longer timescales. The fact that the calculations did not reproduce the dissolution of clays and the formation of gypsum indicates that there is still room for improvement in our model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700