用户名: 密码: 验证码:
Sharp Affine and Improved Moser–Trudinger–Adams Type Inequalities on Unbounded Domains in the Spirit of Lions
详细信息    查看全文
文摘
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have $$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that $$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use $$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation $$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$where the nonlinearity f has the critical exponential growth.KeywordsAffine Moser–Trudinger inequalitiesBest constants for Moser–Trudinger and Adams inequalitiesUnbounded domains Lions typeMathematics Subject ClassificationPrimary: 46E3535J30Secondary: 46E30References1.Adachi, S., Tanaka, K.: Trudinger type inequalities in \(R^{N}\) and their best exponents. Proc. Am. Math. Soc. 128, 2051–2057 (1999)MathSciNetCrossRefMATHGoogle Scholar2.Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128(2), 385–398 (1988)MathSciNetCrossRefMATHGoogle Scholar3.Adimurthi, Druet O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm. Partial Differ. Equ. 29, 295–322 (2004)MathSciNetCrossRefMATHGoogle Scholar4.Beckner, : Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138(1), 213–242 (1993)MathSciNetCrossRefMATHGoogle Scholar5.Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)MathSciNetMATHGoogle Scholar6.Chang, S.Y.A., Yang, P.: The inequality of Moser and Trudinger and applications to conformal geometry. Comm. Pure Appl. Math. 56, 1135–1150 (2003)MathSciNetCrossRefMATHGoogle Scholar7.Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({\mathbb{R}}^{2}\). Comm. Partial Differ. Equ. 17(3–4), 407–435 (1992)MathSciNetCrossRefMATHGoogle Scholar8.Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36(3), 419–436 (2009)MathSciNetCrossRefMATHGoogle Scholar9.do Ó, J.M.: N-Laplacian equations in \({R}^{N}\) with critical growth. Abstr. Appl. Anal. 2(3–4), 301–315 (1997)MathSciNetMATHGoogle Scholar10.Flucher, M.: Extremal functions for Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471–497 (1992)MathSciNetCrossRefMATHGoogle Scholar11.Kavian, O.: Introduction à la théorie des points critiques et applications aux problèmes elliptiques, p. viii+325. Springer, Paris (1993)MATHGoogle Scholar12.Kozono, H., Sato, T., Wadade, H.: Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality. Indiana Univ. Math. J. 55(6), 1951–1974 (2006)MathSciNetCrossRefMATHGoogle Scholar13.Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of N-Laplacian type with critical exponential growth in \(R^N\). J. Funct. Anal. 262(3), 1132–1165 (2012)MathSciNetCrossRefMATHGoogle Scholar14.Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition. J. Geom. Anal. 24(1), 118–143 (2014)MathSciNetCrossRefMATHGoogle Scholar15.Lam, N., Lu, G.: A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255(3), 298–325 (2013)MathSciNetCrossRefMATHGoogle Scholar16.Lam, N., Lu, G.: Sharp Adams type inequalities in Sobolev spaces \(W^{m,\frac{n}{m}}\left( {\mathbb{R}}^{n}\right) \) for arbitrary integer \(m\). J. Differ. Equ. 253, 1143–1171 (2012)MathSciNetCrossRefMATHGoogle Scholar17.Lam, N., Lu, G.: Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231(6), 3259–3287 (2012)MathSciNetCrossRefMATHGoogle Scholar18.Lam, N., Lu, G.: The Moser-Trudinger and Adams inequalities and elliptic and subelliptic equations with nonlinearity of exponential growth. Recent developments in geometry and analysis, Adv. Lect. Math. (ALM), 23, pp. 179–251. Int. Press, Somerville (2012)19.Lam, N., Lu, G.: Sharp singular Adams inequalities in high order Sobolev spaces. Methods Appl. Anal. 19(3), 243–266 (2012)MathSciNetMATHGoogle Scholar20.Lam, N., Lu, G., Tang, H.: On sharp subcritical Moser-Trudinger inequality on the entire Heisenberg group and subelliptic PDEs. Nonlinear Anal. 95, 77–92 (2014)MathSciNetCrossRefMATHGoogle Scholar21.Li, Y.X.: Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A 48(5), 618–648 (2005)MathSciNetCrossRefMATHGoogle Scholar22.Li, Y.X.: Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14(2), 163–192 (2001)MathSciNetMATHGoogle Scholar23.Li, Y.X., Ndiaye, C.: Extremal functions for Moser-Trudinger type inequality on compact closed 4-manifolds. J. Geom. Anal. 17(4), 669–699 (2007)MathSciNetCrossRefMATHGoogle Scholar24.Li, Y.X., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \({\mathbb{R}}^{n}\). Indiana Univ. Math. J. 57(1), 451–480 (2008)MathSciNetCrossRefMATHGoogle Scholar25.Lin, K.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348(7), 2663–2671 (1996)MathSciNetCrossRefMATHGoogle Scholar26.Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1(2), 45–121 (1985)MathSciNetCrossRefMATHGoogle Scholar27.Lu, G., Yang, Y.: Sharp constant and extremal function for the improved Moser-Trudinger inequality involving \(L^{p}\) norm in two dimension. Discrete Contin. Dyn. Syst. 25(3), 963–979 (2009)MathSciNetCrossRefMATHGoogle Scholar28.Lu, G., Yang, Y.: Adams’ inequalities for bi-Laplacian and extremal functions in dimension four. Adv. Math. 220(4), 1135–1170 (2009)MathSciNetCrossRefMATHGoogle Scholar29.Lutwak, E., Yang, D., Zhang, G.: Sharp affine Lp Sobolev inequalities. J. Differ. Geom. 62(1), 17–38 (2002)MATHGoogle Scholar30.Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)31.Ogawa, T., Ozawa, T.: Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem. J. Math. Anal. Appl. 155(2), 531–540 (1991)MathSciNetCrossRefMATHGoogle Scholar32.Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127(2), 259–269 (1995)MathSciNetCrossRefMATHGoogle Scholar33.Pohožaev, S.I.: On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\). (Russian). Dokl. Akad. Nauk SSSR 165, 36–39 (1965)MathSciNetGoogle Scholar34.Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \({\mathbb{R}}^{2}\). J. Funct. Anal. 219(2), 340–367 (2005)MathSciNetCrossRefMATHGoogle Scholar35.Ruf, B., Sani, F.: Sharp Adams-type inequalities in \({\mathbb{R}}^{n}\). Trans. Am. Math. Soc. 365(2), 645–670 (2013)MathSciNetCrossRefMATHGoogle Scholar36.Shaw, M.C.: Eigenfunctions of the nonlinear equation \(\bigtriangleup u+vf(x, u)=0\) in \(R^2\). Pacific J. Math. 129(2), 349–356 (1987)MathSciNetCrossRefMATHGoogle Scholar37.Tarsi, C.: Adams’ inequality and limiting Sobolev embeddings into Zygmund spaces. Potential Anal. doi:10.1007/s11118-011-9259-4 38.Tian, G., Zhu, X.: A nonlinear inequality of Moser-Trudinger type. Calc. Var. Partial Differ. Equ. 10(4), 349–354 (2000)MathSciNetCrossRefMATHGoogle Scholar39.Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)MathSciNetMATHGoogle Scholar40.Yang, Y.: A sharp form of Moser-Trudinger inequality in high dimension. J. Funct. Anal. 239(1), 100–126 (2006)MathSciNetCrossRefMATHGoogle Scholar41.Yudovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. (Russian). Dokl. Akad. Nauk SSSR 138, 805–808 (1961)MathSciNetGoogle Scholar42.Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53(1), 183–202 (1999)MathSciNetMATHGoogle Scholar43.Zhu, J.: The improved Moser-Trudinger inequality with \(L^{p}\) norm in \(n\) dimensions. Adv. Nonlinear Stud. 14(2), 273–294 (2014)MathSciNetCrossRefMATHGoogle ScholarCopyright information© Mathematica Josephina, Inc. 2016Authors and AffiliationsNguyen Lam1Guozhen Lu2Email authorHanli Tang31.Department of MathematicsUniversity of PittsburghPittsburghUSA2.Department of MathematicsWayne State UniversityDetroitUSA3.School of Mathematical SciencesBeijing Normal UniversityBeijingChina About this article CrossMark Publisher Name Springer US Print ISSN 1050-6926 Online ISSN 1559-002X About this journal Reprints and Permissions Article actions .buybox { margin: 16px 0 0; position: relative; } .buybox { font-family: Source Sans Pro, Helvetica, Arial, sans-serif; font-size: 14px; font-size: .875rem; } .buybox { zoom: 1; } .buybox:after, .buybox:before { content: ''; display: table; } .buybox:after { clear: both; } /*---------------------------------*/ .buybox .buybox__header { border: 1px solid #b3b3b3; border-bottom: 0; padding: 8px 12px; position: relative; background-color: #f2f2f2; } .buybox__header .buybox__login { font-family: Source Sans Pro, Helvetica, Arial, sans-serif; font-size: 14px; font-size: .875rem; letter-spacing: .017em; display: inline-block; line-height: 1.2; padding: 0; } .buybox__header .buybox__login:before { position: absolute; top: 50%; -webkit-transform: perspective(1px) translateY(-50%); transform: perspective(1px) translateY(-50%); content: '\A'; width: 34px; height: 34px; left: 10px; } /*---------------------------------*/ .buybox .buybox__body { padding: 0; padding-bottom: 16px; position: relative; text-align: center; background-color: #fcfcfc; border: 1px solid #b3b3b3; } .buybox__body .buybox__section { padding: 16px 12px 0 12px; text-align: left; } .buybox__section .buybox__buttons { text-align: center; width: 100%; } /********** mycopy buybox specific **********/ .buybox.mycopy__buybox .buybox__section .buybox__buttons { border-top: 0; padding-top: 0; } /******/ .buybox__section:nth-child(2) .buybox__buttons { border-top: 1px solid #b3b3b3; padding-top: 20px; } .buybox__buttons .buybox__buy-button { display: inline-block; text-align: center; margin-bottom: 5px; padding: 6px 12px; } .buybox__buttons .buybox__price { white-space: nowrap; text-align: center; font-size: larger; padding-top: 6px; } .buybox__section .buybox__meta { letter-spacing: 0; padding-top: 12px; } .buybox__section .buybox__meta:only-of-type { padding-top: 0; position: relative; bottom: 6px; } /********** mycopy buybox specific **********/ .buybox.mycopy__buybox .buybox__section .buybox__meta { margin-top: 0; margin-bottom: 0; } /******/ .buybox__meta .buybox__product-title { display: inline; font-weight: bold; } .buybox__meta .buybox__list { line-height: 1.3; } .buybox__meta .buybox__list li { position: relative; padding-left: 1em; list-style: none; margin-bottom: 5px; } .buybox__meta .buybox__list li:before { font-size: 1em; content: '\2022'; float: left; position: relative; top: .1em; font-family: serif; font-weight: 600; text-align: center; line-height: inherit; color: #666; width: auto; margin-left: -1em; } .buybox__meta .buybox__list li:last-child { margin-bottom: 0; } /*---------------------------------*/ .buybox .buybox__footer { border: 1px solid #b3b3b3; border-top: 0; padding: 8px 12px; position: relative; border-style: dashed; } /*-----------------------------------------------------------------*/ @media screen and (min-width: 460px) and (max-width: 1074px) { .buybox__body .buybox__section { display: inline-block; vertical-align: top; padding: 12px 12px; padding-bottom: 0; text-align: left; width: 48%; } .buybox__body .buybox__section { padding-top: 16px; padding-left: 0; } .buybox__section:nth-of-type(2) .buybox__meta { border-left: 1px solid #d3d3d3; padding-left: 28px; } .buybox__section:nth-of-type(2) .buybox__buttons { border-top: 0; padding-top: 0; padding-left: 16px ; } .buybox__buttons .buybox__buy-button { } /********** article buybox specific **********/ .buybox.article__buybox .buybox__section:nth-of-type(2) { margin-top: 16px; padding-top: 0; } .buybox.article__buybox .buybox__section:nth-of-type(2) .buybox__meta { margin-top: 40px; padding-top: 0; padding-bottom: 45px; } .buybox.article__buybox .buybox__section:nth-of-type(2) .buybox__meta:only-of-type { margin-top: 8px; padding-top: 12px; padding-bottom: 12px; } /********** mycopy buybox specific **********/ .buybox.mycopy__buybox .buybox__section:first-child { width: 69%; } .buybox.mycopy__buybox .buybox__section:last-child { width: 29%; } /******/ } /*-----------------------------------------------------------------*/ @media screen and (max-width: 459px) { /********** mycopy buybox specific **********/ .buybox.mycopy__buybox .buybox__body { padding-bottom: 5px; } .buybox.mycopy__buybox .buybox__section:last-child { text-align: center; width: 100%; } .buybox.mycopy__buybox .buybox__buttons { display: inline-block; width: 150px ; } /******/ } /*-----------------------------------------------------------------*/ Log in to check access Buy (PDF) EUR 34,95 Unlimited access to the full article Instant download Include local sales tax if applicable Subscribe to Journal Get Access to The Journal of Geometric Analysis for the whole of 2017 Find out about institutional subscriptions (function () { var forEach = function (array, callback, scope) { for (var i = 0; i Export citation .RIS Papers Reference Manager RefWorks Zotero .ENW EndNote .BIB BibTeX JabRef Mendeley Share article Email Facebook Twitter LinkedIn Cookies We use cookies to improve your experience with our site. More information Accept Over 10 million scientific documents at your fingertips

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700