用户名: 密码: 验证码:
Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate
详细信息    查看全文
文摘
To advance commercial application of forward osmosis (FO), we investigated the effects of two additives on the performance of polysulfone (PSf) based FO membranes: one is poly(ethylene glycol) (PEG), and another is PSf grafted with PEG methyl ether methacrylate (PSf-g-PEGMA). PSf blended with PEG or PSf-g-PEGMA was used to form a substrate layer, and then polyamide was formed on a support layer by interfacial polymerization. In this study, NaCl (1 mol∙L–1) and deionized water were used as the draw solution and the feed solution, respectively. With the increase of PEG content from 0 to 15 wt-%, FO water flux declined by 23.4% to 59.3% compared to a PSf TFC FO membrane. With the increase of PSf-g-PEGMA from 0 to 15 wt-%, the membrane flux showed almost no change at first and then declined by about 52.0% and 50.4%. The PSf with 5 wt-% PSf-g-PEGMA FO membrane showed a higher pure water flux of 8.74 L∙m–2∙h–1 than the commercial HTI membranes (6–8 L∙m–2∙h–1) under the FO mode. Our study suggests that hydrophobic interface is very important for the formation of polyamide, and a small amount of PSfg-PEGMA can maintain a good condition for the formation of polyamide and reduce internal concentration polarization.Keywordsthin-film compositeforward osmosisamphiphilic copolymerinterfacial polymerizationpoly(ethylene glycol)References1.Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 2006, 281(1-2): 70–87CrossRefGoogle Scholar2.Lee S, Boo C, Elimelech M, Hong S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 2010, 365(1-2): 34–39CrossRefGoogle Scholar3.Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348(1-2): 337–345CrossRefGoogle Scholar4.Mi B, Elimelech M. Gypsum scaling and cleaning in forward osmosis: Measurements and mechanisms. Environmental Science & Technology, 2010, 44(6): 2022–2028CrossRefGoogle Scholar5.Mi B, Elimelech M. Silica scaling and scaling reversibility in forward osmosis. Desalination, 2013, 312: 75–81CrossRefGoogle Scholar6.Shaffer D L, Yip N Y, Gilron J, Elimelech M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. Journal of Membrane Science, 2012, 415: 1–8CrossRefGoogle Scholar7.Su J, Chung T S, Helmer B J, de Wit J S. Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using sucrose as draw solute. Journal of Membrane Science, 2012, 396: 92–100CrossRefGoogle Scholar8.Ge Q, Wang P, Wan C, Chung T S. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment. Environmental Science & Technology, 2012, 46(11): 62366243CrossRefGoogle Scholar9.Petrotos K B, Quantick P, Petropakis H. A study of the direct osmotic concentration of tomato juice in tubular membrane-module configuration. I. The effect of certain basic process parameters on the process performance. Journal of Membrane Science, 1998, 150(1): 99–110Google Scholar10.Nayak C A, Rastogi N K. Forward osmosis for the concentration of anthocyanin from Garcinia indica Choisy. Separation and Purification Technology, 2010, 71(2): 144–151CrossRefGoogle Scholar11.She Q, Jin X, Tang C Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. Journal of Membrane Science, 2012, 401: 262–273CrossRefGoogle Scholar12.Chou S, Wang R, Shi L, She Q, Tang C, Fane A G. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. Journal of Membrane Science, 2012, 389: 25–33CrossRefGoogle Scholar13.Yip N Y, Tiraferri A, PhillipWA, Schiffrnan J D, Hoover L A, Kim Y C, Elimelech M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environmental Science & Technology, 2011, 45(10): 4360–4369CrossRefGoogle Scholar14.Yip N Y, Elimelech M. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Environmental Science & Technology, 2011, 45(23): 10273–10282CrossRefGoogle Scholar15.Abdallah H, El-Gendi A, Khedr M, El-Zanati E. Hydrophobic polyethersulfone porous membranes for membrane distillation. Frontiers of Chemical Science and Engineering, 2015, 9(1): 84–93CrossRefGoogle Scholar16.Xie M, Nghiem L D, Price W E, Elimelech M. A forward osmosismembrane distillation hybrid process for direct sewer mining: System performance and limitations. Environmental Science & Technology, 2013, 47(23): 13486–13493CrossRefGoogle Scholar17.Phuntsho S, Shon H K, Hong S, Lee S, Vigneswaran S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. Journal of Membrane Science, 2011, 375(1-2): 172–181CrossRefGoogle Scholar18.Phuntsho S, Shon H K, Majeed T, El Saliby I, Vigneswaran S, Kandasamy J, Hong S, Lee S. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination. Environmental Science & Technology, 2012, 46(8): 4567–4575CrossRefGoogle Scholar19.Sukitpaneenit P, Chung T S. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environmental Science & Technology, 2012, 46(13): 7358–7365CrossRefGoogle Scholar20.Wang R, Shi L, Tang C Y, Chou S, Qiu C, Fane A G. Characterization of novel forward osmosis hollow fiber membranes. Journal of Membrane Science, 2010, 355(1-2): 158–167CrossRefGoogle Scholar21.Zhao S, Zou L, Tang C Y, Mulcahy D. Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science, 2012, 396: 1–21CrossRefGoogle Scholar22.Tiraferri A, Yip N Y, Phillip W A, Schiffman J D, Elimelech M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of Membrane Science, 2011, 367(1-2): 340–352CrossRefGoogle Scholar23.McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. Journal of Membrane Science, 2008, 318(1-2): 458–466CrossRefGoogle Scholar24.Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. Journal of Membrane Science, 2009, 336(1-2): 140–148CrossRefGoogle Scholar25.Widjojo N, Chung T S, Weber M, Maletzko C, Warzelhan V. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 2011, 383(1-2): 214–223CrossRefGoogle Scholar26.Zhong P, Fu X, Chung T S, Weber M, Maletzko C. Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates. Environmental Science & Technology, 2013, 47(13): 7430–7436Google Scholar27.Chakrabarty B, Ghoshal A K, Purkait M K. Effect of molecular weight of PEG on membrane morphology and transport properties. Journal of Membrane Science, 2008, 309(1-2): 209–221CrossRefGoogle Scholar28.Liu B, Chen C, Li T, Crittenden J, Chen Y. High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. Journal of Membrane Science, 2013, 445: 66–75CrossRefGoogle Scholar29.Nhu-Ngoc B, McCutcheon J R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environmental Science & Technology, 2013, 47(3): 1761–1769CrossRefGoogle Scholar30.Park J Y, Acar M H, Akthakul A, Kuhlman W, Mayes A M. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27(6): 856–865CrossRefGoogle Scholar31.Ghosh A K, Jeong B H, Huang X, Hoek E M V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. Journal of Membrane Science, 2008, 311(1-2): 34–45CrossRefGoogle Scholar32.Cadotte J E. Interfacially synthesized reverse osmosis membrane. US Patent, 4277344, 1981Google Scholar33.Yip N Y, Tiraferri A, Phillip W A, Schiffman J D, Elimelech M. High performance thin-film composite forward osmosis membrane. Environmental Science & Technology, 2010, 44(10): 3812–3818CrossRefGoogle Scholar34.Phillip W A, Yong J S, Elimelech M. Reverse draw solute permeation in forward osmosis: Modeling and experiments. Environmental Science & Technology, 2010, 44(13): 5170–5176CrossRefGoogle Scholar35.Cath T Y, Elimelech M, McCutcheon J R, McGinnis R L, Achilli A, Anastasio D, Brady A R, Childress A E, Farr I V, Hancock N T, Lampi J, Nghiem L D, Xie M, Yip N Y. Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination, 2013, 312: 31–38CrossRefGoogle Scholar36.Boom R M, Wienk I M, Vandenboomgaard T, Smolders C A. Microstructures in phase inversion membranes.2. The role of a polymeric additive. Journal of Membrane Science, 1992, 73(2-3): 277–292CrossRefGoogle Scholar37.Liu B, Chen C, Zhang W, Crittenden J, Chen Y. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance. Desalination, 2012, 307: 26–33CrossRefGoogle Scholar38.Wei J, Qiu C, Tang C Y, Wang R, Fane A G. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science, 2011, 372(1-2): 292–302CrossRefGoogle Scholar39.Huang L, McCutcheon J R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. Journal of Membrane Science, 2015, 483: 25–33CrossRefGoogle Scholar40.Mi Y F, Zhao Q, Ji Y L, An Q F, Gao C J. A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance. Journal of Membrane Science, 2015, 490: 311–320CrossRefGoogle ScholarCopyright information© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016Authors and AffiliationsBaicang Liu12Email authorChen Chen3Pingju Zhao12Tong Li4Caihong Liu5Qingyuan Wang12Yongsheng Chen6John Crittenden61.College of Architecture and EnvironmentSichuan UniversityChengduChina2.Institute of New Energy and Low Carbon TechnologySichuan UniversityChengduChina3.Litree Purifying Technology Co., LtdHaikouChina4.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina5.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinChina6.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA About this article CrossMark Publisher Name Higher Education Press Print ISSN 2095-0179 Online ISSN 2095-0187 About this journal Reprints and Permissions Article actions Export citation .RIS Papers Reference Manager RefWorks Zotero .ENW EndNote .BIB BibTeX JabRef Mendeley Share article Email Facebook Twitter LinkedIn Cookies We use cookies to improve your experience with our site. More information Accept Over 10 million scientific documents at your fingertips

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700