用户名: 密码: 验证码:
Janus colloidal copolymers
详细信息    查看全文
  • 作者:Peng Zhou ; Fuxin Liang ; Yijiang Liu ; Renhua Deng ; Haili Yang…
  • 刊名:Science China Materials
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:58
  • 期:12
  • 页码:961-968
  • 全文大小:1,163 KB
  • 参考文献:1.Jiang S, Granick S. Janus Particles Synthesis, Self-assembly and Applications. Royal Society of Chemistry: Cambridge, 2012CrossRef
    2.Walther A, Müller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev, 2013, 113: 5194–5261CrossRef
    3.Liang FX, Zhang CL, Yang ZZ. Rational design and synthesis of Janus composites. Adv Mater, 2014, 26: 6944–6949CrossRef
    4.Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci, 2000, 30: 545–610CrossRef
    5.Zhang WB, Yu X, Wang CL, et al. Molecular nanoparticles are unique elements for macromolecular science: from “nanoatoms” to giant molecules. Macromolecules, 2014, 47: 1221–1239CrossRef
    6.Zubarev ER, Xu J, Sayyad A, Gibson JD. Amphiphilicity-driven organization of nanoparticles into discrete assemblies. J Am Chem Soc, 2006, 128: 15098–15099CrossRef
    7.Hu JM, Wu T, Zhang GY, Liu SY. Efficient synthesis of single gold nanoparticle hybrid amphiphilic triblock copolymers and their controlled self-assembly. J Am Chem Soc, 2012, 134: 7624–7627CrossRef
    8.Loweth CJ, Caldwell WB, Peng XG, Alivisatos AP, Schultz PG. DNA-based assembly of gold nanocrystals. Angew Chem Int Ed, 1999, 38: 1808–1812CrossRef
    9.Jackson AM, Myerson JW, Stellacci F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat Mater, 2004, 5: 330–336CrossRef
    10.Kim H, Carney RP, Reguera J, et al. Synthesis and characterization of Janus gold nanoparticles. Adv Mater, 2012, 28: 3857–3863CrossRef
    11.Kim BJ, Bang J, Hawker CJ, et al. Creating surfactant nanoparticles for block copolymer composites through surface chemistry. Langmuir, 2007, 23: 12693–12703CrossRef
    12.Glogowski E, He J, Russell TP, Emrick T. Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. Chem Commun, 2005: 4050–4052
    13.Andala DM, Shin SHR, Lee HY, Bishop KJM. Templated synthesis of amphiphilic nanoparticles at the liquid–liquid interface. ACS Nano, 2012, 6: 1044–1050CrossRef
    14.Worden JG, Shaffer AW, Huo Q. Controlled functionalization of gold nanoparticles through a solid phase synthesis approach. Chem Commun, 2004: 518–519
    15.Sung KM, Mosley DW, Peelle BR, Zhang SG, Jacobson JM. Synthesis of monofunctionalized gold nanoparticles by Fmoc solid-phase reactions. J Am Chem Soc, 2004, 126: 5064–5065CrossRef
    16.Lattuada M, Hatton TA. Preparation and controlled self-assembly of Janus magnetic nanoparticles. J Am Chem Soc, 2007, 129: 12878–12879CrossRef
    17.Li J, Wang L, Benicewicz BC. Synthesis of Janus nanoparticles via a combination of the reversible click reaction and “grafting to” strategies. Langmuir, 2013, 29: 11547–11553CrossRef
    18.Xu XY, Rosi NL, Wang YH, Huo FW, Mirkin CA. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc, 2006, 128: 9286–9287CrossRef
    19.Wang BB, Li B, Zhao B, Li CY. Amphiphilic Janus gold nanoparticles via combining “solid-state grafting-to” and “grafting-from” methods. J Am Chem Soc, 2008, 130: 11594–11595CrossRef
    20.Deng YH, Qi DW, Deng CH, Zhang XM, Zhao DY. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc, 2008, 130: 28–29CrossRef
    21.Kim J, Lee JE, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc, 2006, 128: 688–689CrossRef
  • 作者单位:Peng Zhou (1)
    Fuxin Liang (1)
    Yijiang Liu (1)
    Renhua Deng (1)
    Haili Yang (1)
    Qian Wang (1)
    Xiaozhong Qu (1)
    Zhenzhong Yang (1)

    1. State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
We propose a new type of nanocomposite that we call Janus colloidal copolymers (JCCPs). JCCPs have two different polymers conjugated on opposite sides of a nanosized colloid. Janus clusters of copolymer PS-b-PAA (where PS is polystyrene and PAA is poly(acrylic acid)) are self-organized within confined mesoporous silica channels onto the surface of iron oxide (Fe3O4) core particles by coordination-induced adsorption. PScPAA diblock JCCPs are fabricated by selective crosslinking of the nanosized PAA domains. In addition, the crosslinked PAA domains are terminated with amine-capped polyethylene glycol (PEG) to form PS-cPAA-PEG triblock JCCPs. The cPAA domain containing functional groups can serve as a nanoreactor to allow in situ preparation of functional materials. The composite JCCPs combine the functionality of nanosized colloids with the amphiphilic performance and self-organization capability of copolymers. 中文摘要 本文提出了Janus胶体共聚物(JCCPs)纳米复合粒子概念, 即在纳米胶体粒子两侧对称部分分别复合生长不同的聚合物. 嵌段聚合物PS-b-PAA通过配位键选择性吸附在Fe3O4磁性微球表面后, 在其外部孔道的受限空间内自组装. 选择性交联PAA链段部分即可得到PS-cPAA两嵌段JCCPs. 在交联的PAA另一侧接枝复合一端带NH2基团的PEG从而制备得到PS-cPAA-PEG三嵌段JCCPs. 部分交联的PAA链段部分有功能化基团可以作为纳米反应器进而原位选择性生长功能物质. JCCPs复合纳米粒子兼具纳米胶体颗粒的双亲性与 共聚物的自组装特性.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700