用户名: 密码: 验证码:
Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%
详细信息    查看全文
  • 作者:Long Ye ; Benhu Fan ; Shaoqing Zhang ; Sunsun Li ; Bei Yang…
  • 刊名:Science China Materials
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:58
  • 期:12
  • 页码:953-960
  • 全文大小:697 KB
  • 参考文献:1.Gao F, Ren S, Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy Environ Sci, 2013, 6: 2020–2040CrossRef
    2.Chueh CC, Li CZ, Jen AKY. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ Sci, 2015, 8: 1160–1189CrossRef
    3.Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics, 2014, 8: 506–514CrossRef
    4.Song TB, Chen Q, Zhou H, et al. Perovskite solar cells: film formation and properties. J Mater Chem A, 2015, 3: 9032–9050CrossRef
    5.Xiao J, Shi J, Li D, Meng Q. Perovskite thin-film solar cell: excitation in photovoltaic science. Sci China Chem, 2015, 58: 221–238CrossRef
    6.You J, Hong Z, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with hi gh efficiency and flexibility. ACS Nano, 2014, 8: 1674–1680CrossRef
    7.Xie FX, Zhang D, Su H, et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano, 2015, 9: 639–646CrossRef
    8.Liang PW, Liao CY, Chueh CC, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater, 2014, 26: 3748–3754CrossRef
    9.You J, Yang Y, Hong Z, et al. Moisture assisted perovskite film growth for high performance solar cells. Appl Phys Lett, 2014, 105: 183902CrossRef
    10.Min J, Zhang ZG, Hou Y, et al. Interface engineering of perovskite hybrid solar cells with solution-processed perylene–diimide heterojunctions toward high performance. Chem Mater, 2015, 27: 227–234CrossRef
    11.Xue Q, Hu Z, Liu J, et al. Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer. J Mater Chem A, 2014, 2: 19598–19603CrossRef
    12.Sun C, Xue Q, Hu Z, et al. Phosphonium halides as both processing additives and interfacial modifiers for high performance planar-heterojunction perovskite solar cells. Small, 2015, 11: 3344–3350CrossRef
    13.Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4: 2761CrossRef
    14.Sun K, Chang J, Isikgor FH, Li P, Ouyang J. Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. Nanoscale, 2015, 7: 896–900CrossRef
    15.Xia Y, Sun K, Chang J, Ouyang J. Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. J Mater Chem A, 2015, 3: 15897–15904CrossRef
    16.Li C, Wang F, Xu J, et al. Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Nanoscale, 2015, 7: 9771–9778CrossRef
    17.Wang L, Fu W, Gu Z, et al. Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. J Mater Chem C, 2014, 2: 9087–9090CrossRef
    18.Liu X, Yu H, Yan L, et al. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. ACS Appl Mater Interfaces, 2015, 7: 6230–6237CrossRef
    19.Liu X, Jiao W, Lei M, et al. Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells. J Mater Chem A, 2015, 3: 9278–9284CrossRef
    20.Dou L, You J, Hong Z, et al. 25th anniversary article: a decade of organic/polymeric photovoltaic research. Adv Mater, 2013, 25: 6642–6671CrossRef
    21.Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733CrossRef
    22.Ye L, Zhang S, Huo L, Zhang M, Hou J. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc Chem Res, 2014, 47: 1595–1603CrossRef
    23.Wang F, Tan Za, Li Y. Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy Environ Sci, 2015, 8: 1059–1091CrossRef
    24.You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun, 2013, 4: 1446CrossRef
    25.Chen CC, Chang WH, Yoshimura K, et al. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv Mater, 2014, 26: 5670–5677CrossRef
    26.Zuo L, Chang CY, Chueh CC, et al. Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. Energy Environ Sci, 2015, 8: 1712–1718CrossRef
    27.Li K, Li Z, Feng K, et al. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J Am Chem Soc, 2013, 135: 13549–13557CrossRef
    28.Cheng P, Yan C, Li Y, Ma W, Zhan X. Diluting concentrated solution: a general, simple and effective approach to enhance efficiency of polymer solar cells. Energy Environ Sci, 2015, 8: 2357–2364CrossRef
    29.Chen LM, Hong Z, Li G, Yang Y. Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater, 2009, 21: 1434–1449CrossRef
    30.Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev, 2014, 114: 7006–7043CrossRef
    31.Liu F, Gu Y, Jung JW, Jo WH, Russell TP. On the morphology of polymer-based photovoltaics. J Polym Sci Part B Polym Phys, 2012, 50: 1018–1044CrossRef
    32.Chen CC, Bae SH, Chang WH, et al. Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Mater Horiz, 2015, 2: 203–211CrossRef
    33.Liu Y, Hong Z, Chen Q, et al. Integrated perovskite/bulk-heterojunction toward efficient solar cells. Nano Lett, 2015, 15: 662–668CrossRef
    34.Wang K, Liu C, Du P, Zheng J, Gong X. Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ Sci, 2015, 8: 1245–1255CrossRef
    35.Liu C, Wang K, Du P, et al. Efficient solution-processed bulk heterojunction perovskite hybrid solar cells. Adv Energy Mater, 2015, 5, doi: 10.1002/aenm.1402024
    36.Zuo C, Ding L. Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm. J Mater Chem A, 2015, 3: 9063–9096CrossRef
    37.Bijleveld JC, Zoombelt AP, Mathijssen SGJ, et al. Poly(diketopyrrolopyrrole- terthiophene) for ambipolar logic and photovoltaics. J Am Chem Soc, 2009, 131: 16616–16617CrossRef
    38.Li W, Furlan A, Hendriks KH, Wienk MM, Janssen RAJ. Efficient tandem and triple-junction polymer solar cells. J Am Chem Soc, 2013, 135: 5529–5532CrossRef
    39.Hendriks KH, Heintges GHL, Gevaerts VS, Wienk MM, Janssen RAJ. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem Int Ed, 2013, 52: 8341–8344CrossRef
    40.Ye L, Zhang S, Ma W, et al. From binary to ternary solvent: morphology fine-tuning of D/A blends in PDPP3T-based polymer solar cells. Adv Mater, 2012, 24: 6335–6341CrossRef
    41.Ma W, Tumbleston JR, Ye L, et al. Quantification of nano-and mesoscale phase separation and relation to donor and acceptor quantum efficiency, Jsc, and FF in polymer:fullerene solar cells. Adv Mater, 2014, 26: 4234–4241CrossRef
    42.Liu J, Shao S, Fang G, et al. High-efficiency inverted tandem polymer solar cells with step-Al-doped MoO3 interconnection layer. Sol Energy Mater Sol Cells, 2014, 120: 744–750CrossRef
    43.Zhao W, Ye L, Zhang S, et al. Ultrathin polyaniline-based buffer layer for highly efficient polymer solar cells with wide applicability. Sci Rep, 2014, 4: 6570CrossRef
    44.Guo X, Zhang M, Tan J, et al. Influence of D/A ratio on photovoltaic performance of a highly efficient polymer solar cell system. Adv Mater, 2012, 24: 6536–6541CrossRef
    45.Dou L, Chen CC, Yoshimura K, et al. Synthesis of 5H-dithieno [3,2-b:2',3'-d]pyran as an electron-rich building block for donor–acceptor type low-bandgap polymers. Macromolecules, 2013, 46: 3384–3390CrossRef
    46.Ye L, Zhou C, Meng H, et al. Toward reliable and accurate evaluation of polymer solar cells based on low band gap polymers. J Mater Chem C, 2015, 3: 564–569CrossRef
  • 作者单位:Long Ye (1)
    Benhu Fan (1)
    Shaoqing Zhang (1)
    Sunsun Li (1)
    Bei Yang (1)
    Yunpeng Qin (1)
    Hao Zhang (1)
    Jianhui Hou (1)

    1. State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
In the past several years, conjugated polymers and organometal halide perovskites have become regarded as promising light-absorbing materials for next-generation photovoltaic devices and have attracted a great deal of interest. As the main part of this contribution, we describe the enhancement of near-infrared (NIR) photoresponse of well-known CH3NH3PbI3−x Cl x -based solar cells by the integration of bulk heterojunction (BHJ) small band gap polymer:fullerene absorbers. Particularly, the integration of a commercially available polymer PDPP3T and PCBM-based BHJ boosts the peak external quantum efficiency (EQE) by up to 46% in the NIR region (800−1000 nm), which is outside of the photoresponsive region (300−800 nm) of conventional perovskite solar cells. This substantial improvement in the EQE over the NIR region offers an additional current density of ∼5 mA cm−2 for the control perovskite solar cell, and a high power conversion efficiency (PCE) of over 12% was obtained in the perovskite/BHJ-based solar cells. In addition, the insertion of the BHJ absorber consisting of a small band gap polymer PDTP-DFBT and PCBM also results in nearly 40% EQE for the perovskite/BHJ solar cell. The results also reveal that controlling over the polymer/PCBM weight ratio for a BHJ absorber is the key to achieving the optimal efficiency for this type of perovskite-polymer hybrid solar cell. 中文摘要 近年来, 共轭聚合物和钙钛矿型有机金属卤化物被视为极具潜力的光伏材料, 引起了广泛的研究兴趣. 本文通过引入两种本体异质结(BHJ)聚合物: 富勒烯活性层, 大幅提高了基于CH3NH3PbI3−x 的钙钛矿太阳能电池的近红外光响应特性. 其中, 基于窄带隙聚合物PDPP3T的钙钛矿/BHJ杂化太阳能电池在近红外区域(800∼1000 nm)内的外量子效率(EQE)峰值高达46%, 且该区域已经超出了CH3NH3PbI3−x 型太阳能电池的光响应范围(300∼800 nm). 相较于参照的钙钛矿太阳能电池, 近红外区域大幅提升的EQE为钙钛矿/BHJ杂化太阳能电池贡献了额外的电流密度(∼5 mA cm−2), 因此其光电转换效率达到了12%以上. 此外, 引入基于聚合物PDTP-DFBT的BHJ也可以使钙钛矿太阳能电池在近红外区域的EQE达到40%以上. 研究结果也表明优化BHJ的聚合物: 富勒烯比例是提高这类钙钛矿-聚合物杂化太阳能电池性能的关键.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700