用户名: 密码: 验证码:
Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd–thiolate cluster
详细信息    查看全文
  • 作者:Quanchen Feng ; Weiyang Wang ; Weng-Chon Cheong ; Dingsheng Wang…
  • 刊名:Science China Materials
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:58
  • 期:12
  • 页码:936-943
  • 全文大小:938 KB
  • 参考文献:1.Alemany P, Hoffmann R. Toroidal nickel thiolates: structure and bonding. J Am Chem Soc, 1993, 115: 8290–8297CrossRef
    2.Krebs B, Henkel G. Transition-metal thiolates: from molecular fragments of sulfidic solids to models for active centers in biomolecules. Angew Chem Int Ed, 1991, 30: 769–788CrossRef
    3.Dance IG. The structural chemistry of metal thiolate complexes. Polyhedron, 1986, 5: 1037–1104CrossRef
    4.Desireddy A, Conn BE, Guo J, et al. Ultrastable silver nanoparticles. Nature, 2013, 501: 399–402CrossRef
    5.Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science, 2007, 318: 430–433CrossRef
    6.Hsu IJ, Hsieh CH, Ke SC, et al. New members of a class of iron-thiolate-nitrosyl compounds: trinuclear iron-thiolate-nitrosyl complexes containing Fe3S6 core. J Am Chem Soc, 2007, 129: 1151–1159CrossRef
    7.Eichhofer A, Andrushko V, Bodenstein T, Fink K. Trinuclear early/late-transition-metal thiolate complexes. Eur J Inorg Chem, 2014, 3510–3520
    8.Jian FF, Jiao K, Li Y, Zhao PS, Lu LD. [Ni6(SCH2CH2OH)12]: a double crown [12]metallacrown-6 nickel(II) cluster. Angew Chem Int Ed, 2003, 42: 5722–5724CrossRef
    9.Woodward P, Dahl LF, Abel EW, Crosse BC. A new type of cyclic transition metal complex, [Ni(SC2H5)2]6. J Am Chem Soc, 1965, 87: 5251–5253CrossRef
    10.Zhu M, Zhou S, Yao C, Liao L, Wu Z. Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters. Nanoscale, 2014, 6: 14195–14199CrossRef
    11.Yang HY, Wang Y, Yan JZ, et al. Structural evolution of atomically precise thiolated bimetallic [Au12+n Cu32(SR)30+n ]4-(n=0, 2, 4, 6) nanoclusters. J Am Chem Soc, 2014, 136: 7197–7200CrossRef
    12.Melzer MM, Mossin S, Cardenas AJP, et al. A copper(II) thiolate from reductive cleavage of an S-nitrosothiol. Inorg Chem, 2012, 51: 8658–8660CrossRef
    13.Ibrahim MM, Seebacher J, Steinfeld G, Vahrenkamp H. Tris(thloimidazolyl) borate-zinc-thiolate complexes for the modeling of biological thiolate alkylations. Inorg Chem, 2005, 44: 8531–8538CrossRef
    14.Ananikov VP, Orlov NV, Zalesskiy SS, et al. Catalytic adaptive recognition of thiol (SH) and selenol (SeH) groups toward synthesis of functionalized vinyl monomers. J Am Chem Soc, 2012, 134: 6637–6649CrossRef
    15.Chen J, Liu L, Weng L, et al. Synthesis and properties evolution of a family of tiara-like phenylethanethiolated palladium nanoclusters. Sci Rep, 2015, 5: 16628CrossRef
    16.Anson CE, Eichhöfer A, Issac I, et al. Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96], and [Ag490S188(StC5H11)114]. Angew Chem Int Ed, 2008, 47: 1326–1331CrossRef
    17.Chakraborty I, Govindarajan A, Erusappan J, et al. The superstable 25 kDa monolayer protected silver nanoparticle: measurements and interpretation as an icosahedral Ag152(SCH2CH2Ph)60 cluster. Nano Lett, 2012, 12: 5861–5866CrossRef
    18.Albrecht C, Schwieger S, Bruhn C, et al. Alkylthio bridged 44 cve triangular platinum clusters: synthesis, oxidation, degradation, ligand substitution, and quantum chemical calculations. J Am Chem Soc, 2007, 129: 4551–4566CrossRef
    19.Heaven MW, Dass A, White PS, Holt KM, Murray RW. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc, 2008, 130: 3754–3755CrossRef
    20.Chong H, Li P, Wang S, et al. Au25 clusters as electron-transfer catalysts induced the intramolecular cascade reaction of 2-nitrobenzonitrile. Sci Rep, 2013, 3: 3214CrossRef
    21.Li G, Zeng C, Jin R. Thermally robust Au99(SPh)42 nanoclusters for chemoselective hydrogenation of nitrobenzaldehyde derivatives in water. J Am Chem Soc, 2014, 136: 3673–3679CrossRef
    22.Li G, Lei Z, Wang QM. Luminescent molecular Ag-S nanocluster [Ag62S13(SBut)32](BF4)4. J Am Chem Soc, 2010, 132: 17678–17679CrossRef
    23.Udaya Bhaskara Rao T, Pradeep T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed, 2010, 49: 3925–3929CrossRef
    24.Zhu M, Aikens CM, Hendrich MP, et al. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc, 2009, 131: 2490–2492CrossRef
    25.Antonello S, Perera NV, Ruzzi M, Gascón JA, Maran F. Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)18 cluster. J Am Chem Soc, 2013, 135: 15585–15594CrossRef
    26.Wu ZN, Li YC, Liu JL, et al. Colloidal self-assembly of catalytic copper nanoclusters into ultrathin ribbons. Angew Chem Int Ed, 2014, 53: 12196–12200CrossRef
    27.Wu ZN, Dong CW, Li YC, et al. Self-assembly of Au-15 into single-cluster-thick sheets at the interface of two miscible high-boiling solvents. Angew Chem Int Ed, 2013, 52: 9952–9955CrossRef
    28.Li L, Wang Q. Spontaneous self-assembly of silver nanoparticles into lamellar structured silver nanoleaves. ACS Nano, 2013, 7: 3053–3060CrossRef
    29.Liu Y, Wu ZN, Zhang H. Deriving the colloidal synthesis of crystalline nanosheets to create self-assembly monolayers of nanoclusters. Adv Colloid Interface Sci, 2014, 207: 347–360CrossRef
    30.Jia XF, Li J, Wang EK. Supramolecular self-assembly of morphology-dependent luminescent Ag nanoclusters. Chem Commun, 2014, 50: 9565–9568CrossRef
    31.Beletskaya IP, Cheprakov AV. The heck reaction as a sharpening stone of palladium catalysis. Chem Rev, 2000, 100: 3009–3066CrossRef
    32.Jiang B, Song S, Wang J, et al. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Res, 2014, 7: 1280–1290CrossRef
    33.Wang Z, Chen W, Han Z, et al. Pd embedded in porous carbon (Pd@ CMK-3) as an active catalyst for Suzuki reactions: accelerating mass transfer to enhance the reaction rate. Nano Res, 2014, 7: 1254–1262CrossRef
    34.Long R, Wu D, Li Y, et al. Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control. Nano Res, 2015, 8: 2115–2123CrossRef
    35.Li L, Zhou C, Zhao H, Wang R. Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene. Nano Res, 2015, 8: 709–721CrossRef
    36.Xu B, Yang H, Zhou G, Wang X. Strong metal-support interaction in size-controlled monodisperse palladium-hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Sci China Mater, 2014, 57: 34–41CrossRef
    37.Gao D, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc, 2015, 4288–4291
    38.Huang H, Bao S, Chen Q, et al. Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Res, 2015, 8: 2698–2705CrossRef
    39.Huang XQ, Tang SH, Mu XL, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol, 2011, 6: 28–32CrossRef
    40.Mashkina AV, Sakhaltueva LG. Gas-phase thiophene hydrogenation to tetrahydrothiophene over sulfide catalysts. Kinet Catal, 2002, 43: 107–114CrossRef
    41.Raybaud P, Hafner J, Kresse G, Toulhoat H. Ab initio density functional studies of transition-metal sulphides: II. electronic structure. J Phys Condens Matter, 1997, 9: 11107CrossRef
    42.Dey S, Jain VK. Platinum group metal chalcogenides. Platinum Met Rev, 2004, 48: 16–29
    43.Bladon JJ, Lamola A, Lytle FW, et al. A palladium sulfide catalyst for electrolytic plating. J Electrochem Soc, 1996, 143: 1206–1213CrossRef
    44.Li X, Wen J, Low J, Fang Y, Yu J. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater, 2014, 57: 70–100CrossRef
    45.Liu J, Zhao Y, Liu J, et al. From Cu2S nanocrystals to Cu doped CdS nanocrystals through cation exchange: controlled synthesis, optical properties and their p-type conductivity research. Sci China Mater, 2015, 58: 693–703CrossRef
    46.Yang ZQ, Smetana AB, Sorensen CM, Klabunde KJ. Synthesis and characterization of a new tiara Pd(II) thiolate complex, [Pd(SC12H25)2]6, and its solution-phase thermolysis to prepare nearly monodisperse palladium sulfide nanoparticles. Inorg Chem, 2007, 46: 2427–2431CrossRef
    47.Jose D, Jagirdar BR. Synthesis and characterization of Pd(0), PdS, and Pd@PdO core-shell nanoparticles by solventless thermolysis of a Pd-thiolate cluster. J Solid State Chem, 2010, 183: 2059–2067CrossRef
    48.Carlsen L, Egsgaard H, Harpp DN. Gas-phase thermolyses 4. Gasphase thermolyses of thietan 1-oxide and 1,2-oxathiolan 2-oxide-evidence for the intermediacy of 1,2-oxathiolan. J Chem Soc Perkin Trans 2, 1981, 1166–1170
    49.Spek AL. Refcode AFACUG. Cambridge Crystallographic Database, 2007
    50.Nobusada K, Yamaki T. Electronic properties of palladium-thiolate complexes with tiara-like structures. J Phys Chem A, 2004, 108: 1813–1817CrossRef
    51.Stash AI, Perepelkova TI, Noskov YG, Buslaeva TM, Romm IP. Palladium clusters Pd4(SEt)4(OAc)4 and Pd6(SEt)12: structure and properties. Russ J Coord Chem, 2001, 27: 585–590CrossRef
    52.Higgins JD, Suggs JW. Preparation, structure and spectroscopic studies of the palladium mercaptides Pd8(S-Npr)16 and Pd6(SNpr)12. Inorg Chim Acta, 1988, 145: 247–252CrossRef
    53.Stash AI, Levashova VV, Lebedev SA, et al. Palladium clusters Pd4(SR)4(OAc)4 and Pd6(SR)12 (R = Bu, Ph): structure and properties. Russ J Coord Chem, 2009, 35: 136–141CrossRef
    54.Schneider I, Horner M, Olendzki RN, Strahle J. Structure of cyclo-hexakis[bis-µ-(methoxycarbonylmethylthiolato)-palladium( II)], [Pd(SCH2COOCH3)2]6. Acta Crystallogr Sect C Cryst Struct Commun, 1993, 49: 2091–2093CrossRef
    55.Mahmudov KT, Hasanov XI, Maharramov AM, et al. A hexanuclear metallacrown palladium(II) cluster derived from 2-mercaptoethanol. Inorg Chem Commun, 2013, 29: 37–39CrossRef
  • 作者单位:Quanchen Feng (1)
    Weiyang Wang (1)
    Weng-Chon Cheong (1)
    Dingsheng Wang (1)
    Qing Peng (1)
    Jinpeng Li (1)
    Chen Chen (1)
    Yadong Li (1)

    1. Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering, Tsinghua University, Beijing, 100084, China
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
A novel one-pot approach to synthesize the tiara-like Pd(II) thiolate complex compound, [Pd(SCH3)2]6 was developed. In this strategy, dimethyl sulfoxide (DMSO) was used as a thiolate source instead of methyl mercaptan (CH3SH). DMSO was first decomposed into CH3SH and formaldehyde (HCHO); then, the in situ as-formed CH3SH molecules reacted with palladium acetate, and formed [Pd(SCH3)2]6. By tuning the reaction condition, the morphology of the [Pd(SCH3)2]6 assemblies can change from microprism to nanosphere. The characterization of the pyrolysis product demonstrated that these two kinds of [Pd(SCH3)2]6 assemblies with different shapes could further decompose into palladium or palladium sulfides through different pyrolysis conditions. 中文摘要 本文以醋酸钯为钯源, 二甲基亚砜为硫源, 在乙二醇和醋酸存在的条件下通过一步法制备了一种六核钯–甲硫醇团簇化合物 [Pd(SCH3)2]6. 其具有特征的类花冠形结构. 对其反应机制进行了探讨, 首先二甲基亚砜分解生成甲硫醇和甲醛, 钯与甲硫醇反应原位生 成钯–甲硫醇团簇. 这些生成的团簇分子进一步组装成微米尺寸大小的棱柱. 通过向反应体系中引入一种表面活性剂, 产物的形貌从微 米棱柱转变为纳米球. 350°C下, [Pd(SCH3)2]6的微米棱柱在空气中分解得到金属钯单质. 对其热解产物进行电镜表征, 发现其在保持原 有棱柱形貌的基础上形成了孔道结构. 在不同的热解条件下可以得到钯或硫化钯热解产物.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700