用户名: 密码: 验证码:
Structural and electronic properties of atomically thin germanium selenide polymorphs
详细信息    查看全文
  • 作者:Shengli Zhang ; Shangguo Liu ; Shiping Huang ; Bo Cai ; Meiqiu Xie…
  • 刊名:Science China Materials
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:58
  • 期:12
  • 页码:929-935
  • 全文大小:1,264 KB
  • 参考文献:1.Novoselov KS, Geim AK, Morozov S, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669CrossRef
    2.Jose D, Datta A. Structures and chemical properties of silicene: unlike graphene. Acc Chem Res, 2013, 47: 593–602CrossRef
    3.Zhang SL, Xie MQ, Li FY, et al. Semiconducting group–V monolayers: broad range of band gaps and high carrier mobilities. Angew Chem Int Ed, 2015, DOI: 10.1002/anie.201507568
    4.Liu H, Neal AT, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS nano, 2014, 8: 4033–4041CrossRef
    5.Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: a new direct–gap semiconductor. Phys Rev Lett, 2010, 105: 136805CrossRef
    6.Tang Q, Zhou Z, Chen Z. Innovation and discovery of graphenelike materials via density–functional theory computations. Comput Mol Sci, 2015, 5: 360–379CrossRef
    7.Tang Q, Zhou Z. Graphene–analogous low–dimensional materials. Prog Mater Sci, 2013, 58: 1244–1315CrossRef
    8.Zhang SL, Hu YH, Hu ZY, et al. Hydrogenated arsenenes as planar magnet and Dirac material. Appl Phys Lett, 2015, 107: 022102CrossRef
    9.Antunez PD, Buckley JJ, Brutchey RL. Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale, 2011, 3: 2399–2411CrossRef
    10.Li L, Chen Z, Hu Y, et al. Single–layer single-crystalline SnSe nanosheets. J Am Chem Soc, 2013, 135: 1213–1216CrossRef
    11.Mukherjee B, Cai Y, Tan HR, et al. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl Mater Interfaces, 2013, 5: 9594–9604CrossRef
    12.Vaughn Il DD, Patel RJ, Hickner MA, et al. Single-crystal colloidal nanosheets of GeS and GeSe. J Am Chem Soc, 2010, 132: 15170–15172CrossRef
    13.Xue DJ, Tan J, Hu JS, et al. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv Mater, 2012, 24: 4528–4533CrossRef
    14.Yoon SM, Song HJ, Choi HC. p-Type semiconducting GeSe combs by a vaporization–condensation–recrystallization (VCR) process. Adv Mater, 2010, 22: 2164–2167CrossRef
    15.Zhao LD, Lo SH, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377CrossRef
    16.Hsueh H, Vass H, Clark S, et al. High-pressure effects in the layered semiconductor germanium selenide. Phys Rev B, 1995, 51: 16750CrossRef
    17.Makinistian L, Albanesi E. Ab initio calculations of the electronic and optical properties of germanium selenide. J Phys Cond Matt, 2007, 19: 186211CrossRef
    18.Rathor A, Sharma V, Heda N, et al. Compton profiles and band structure calculations of IV–VI layered compounds GeS and GeSe. Radiat Phys Chem, 2008, 77: 391–400CrossRef
    19.Yu LM, Degiovanni A, Thiry P, et al. Infrared optical constants of orthorhombic IV-VI lamellar semiconductors refined by a combined study using optical and electronic spectroscopies. Phys Rev B, 1993, 47: 16222CrossRef
    20.Kamal C, Ezawa M. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B, 2015, 91: 085423CrossRef
    21.Wu M, Fu H, Zhou L, et al. Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family. Nano Lett, 2015, 15: 3557–3562CrossRef
    22.Guan J, Zhu Z, Tománek D. Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys Rev Lett, 2014, 113: 046804CrossRef
    23.Zhu Z, Tománek D. Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett, 2014, 112: 176802CrossRef
    24.Guan J, Zhu Z, Tománek D. Tiling phosphorene. ACS nano, 2014, 8: 12763–12768CrossRef
    25.Zhu Z, Guan J, Liu D, et al. Designing isoelectronic counterparts to layered group V semiconductors. ACS nano, 2015, 9: 8284–8290CrossRef
    26.Singh AK, Hennig RG. Computational prediction of two-dimensional group-IV mono-chalcogenides. Appl Phys Lett, 2014, 105: 042103CrossRef
    27.Segall M, Lindan PJ, Probert MA, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Cond Matt, 2002, 14: 2717CrossRef
    28.Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865CrossRef
    29.White J, Bird D. Implementation of gradient-corrected exchange- correlation potentials in Car-Parrinello total-energy calculations. Phys Rev B, 1994, 50: 4954CrossRef
    30.Fischer TH, Almlof J. General methods for geometry and wave function optimization. J Phys Chem, 1992, 96: 9768–9774CrossRef
    31.Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188CrossRef
    32.Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207–8215CrossRef
    33.Gomes LC, Carvalho A. Phosphorene analogues: isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys Rev B, 2015, 92: 085406CrossRef
    34.Zhang SL, Yan Z, Li YF, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed, 2015, 54: 3112–3115CrossRef
    35.Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80CrossRef
    36.Scalise E, Houssa M, Pourtois G, et al. Vibrational properties of silicene and germanene. Nano Res, 2013, 6: 19–28CrossRef
    37.Lee C, Yan H, Brus LE, et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS nano, 2010, 4: 2695–2700CrossRef
  • 作者单位:Shengli Zhang (1)
    Shangguo Liu (2)
    Shiping Huang (2)
    Bo Cai (1)
    Meiqiu Xie (1)
    Lihua Qu (1)
    Yousheng Zou (1)
    Ziyu Hu (3)
    Xuechao Yu (4)
    Haibo Zeng (1)

    1. Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
    2. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
    3. Beijing Computational Science Research Center, Beijing, 100094, China
    4. PTIMUS, Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
Using comprehensive density functional theory calculations, we systematically investigate the structure, stability, and electronic properties of five polymorphs of GeSe monolayer, and highlight the differences in their structural and electronic properties. Our calculations show that the five free-standing polymorphs of GeSe are stable semiconductors. β-GeSe, γ-GeSe, δ-GeSe, and ε-GeSe are indirect gap semiconductors, whereas α-GeSe is a direct gap semiconductor. We calculated Raman spectra and scanning tunneling microscopy images for the five polymorphs. Our results show that the β-GeSe monolaye r is a candidate for water splitting. 中文摘要 本文利用密度泛函理论, 系统研究了五种单层GeSe晶型的结构、稳定性和电子结构特性, 并着重分析了其结构和电子性质差异. 研究结果表明, 五种单层GeSe晶型均表现出稳定的半导体特性. 不同的是β-GeSe、γ-GeSe、δ-GeSe和ε-GeSe晶型结构是间接带隙半导体材料, 而α-GeSe是直接带隙半导体. 计算进一步提供了五种晶型结构的拉曼光谱和扫描隧道显微镜图像. 带边排布分析表明β-GeSe单层材料适用于光催化分解水.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700