用户名: 密码: 验证码:
Phase-equilibrium-dominated vapor-liquid-solid mechanism: further evidence
详细信息    查看全文
  • 作者:Yongliang Zhang 张永亮 ; Jing Cai 蔡婧 ; Qiang Wu 吴强 ; Xizhang Wang 王喜章
  • 关键词:nanowires growth ; prediction ; growth mechanism ; phase equilibrium ; quantitative experimental analysis
  • 刊名:Science China Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:59
  • 期:1
  • 页码:20-27
  • 全文大小:1,815 KB
  • 参考文献:1.Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437: 121–124CrossRef
    2.Morin SA, Bierman MJ, Tong J, et al. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science, 2010, 328: 476–480CrossRef
    3.Meng F, Morin SA, Forticaux A, et al. Screw dislocation driven growth of nanomaterials. Acc Chem Res, 2013, 46: 1616–1626CrossRef
    4.Wagner RS, Ellis WC. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 1964, 4: 89–90CrossRef
    5.Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279: 208–211CrossRef
    6.Xia YN, Yang PD, Sun YG, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater, 2003, 15: 353–389CrossRef
    7.Wacaser BA, Dick KA, Johansson J, et al. Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv Mater, 2009, 21: 153–165CrossRef
    8.Tian BZ, Xie P, Kempa TJ, et al. Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotech, 2009, 4: 824–829CrossRef
    9.Wu YY, Yang PD. Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc, 2001, 123: 3165–3166CrossRef
    10.Hannon JB, Kodambaka S, Ross FM, et al. The influence of the surface migration of gold on the growth of silicon nanowires. Nature, 2006, 440: 69–71CrossRef
    11.Kodambaka S, Tersoff J, Reuter MC, et al. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys Rev Lett, 2006, 96: 096105CrossRef
    12.Glas F, Harmand JC, Patriarche G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys Rev Lett, 2007, 99: 146101CrossRef
    13.Sutter E, Sutter P. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires. Nano Lett, 2008, 8: 411–414CrossRef
    14.Kim BJ, Tersoff J, Kodambaka S, et al. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science, 2008, 322: 1070–1073CrossRef
    15.Oh SH, Chisholm MF, Kauffmann Y, et al. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires. Science, 2010, 330: 489–493CrossRef
    16.Chou YC, Hillerich K, Tersoff J, et al. Atomic-scale variability and control of III-V nanowire growth kinetics. Science, 2014, 343: 281–284CrossRef
    17.He CY, Wang XZ, Wu Q, et al. Phase-equilibrium-dominated vapor-liquid-solid growth mechanism. J Am Chem Soc, 2010, 132: 4843–4847CrossRef
    18.Nash P, Singleton MF, Murray JL. Al-Ni phase diagram, ASM Handbook Volume 3: Alloy Phase Diagrams. Materials Park: ASM International, 1992
    19.Zhang XH, Shao RW, Jin L, et al. Helical growth of aluminum nitride: new insights into its growth habit from nanostructures to single crystals. Sci Rep, 2015, 5: 10087CrossRef
    20.Meng F, Estruga M, Forticaux A, et al. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires. ACS Nano, 2013, 7: 11369–11378CrossRef
    21.Al-Ni phase diagram. Data from FSstel-FactSage steel alloy databases 2010. 〈http://​www.​crct.​polymtl.​ca/​fact/​phase_​diagram.​php?​-file=​Al-Ni.​jpg&​dir=​FSstel〉

22.Bradley AJ, Taylor A. An X-ray analysis of the nickel-aluminium system. Proc R Soc London Ser A, 1937, 159: 56–72CrossRef
23.Taylor A, Doyle NJ. Further studies on the nickel-aluminum system. I. The b-NiAl and d-Ni2Al3 Phase Fields. J Appl Cryst, 1972, 5: 201–209CrossRef
24.Huo KF, Hu YM, Fu JJ, et al. Direct and large-area growth of one-dimensional ZnO nanostructures from and on a brass substrate. J Phys Chem C, 2007, 111: 5876–5881CrossRef
25.Sheng X, Wang L, Chang LT, et al. Growth and photoelectrochemical properties of ordered CuInS2 nanorod arrays. Chem Commun, 2012, 48: 4746–4748CrossRef
26.Moutanabbir O, Isheim D, Blumtritt H, et al. Colossal injection of catalyst atoms into silicon nanowires. Nature, 2013, 496: 78–82CrossRef
  • 作者单位:Yongliang Zhang 张永亮 (1)
    Jing Cai 蔡婧 (1)
    Qiang Wu 吴强 (1)
    Xizhang Wang 王喜章 (1)
    Lijun Yang 杨立军 (1)
    Chengyu He 何承雨 (1)
    Zheng Hu 胡征 (1)

    1. Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
  • 文摘
    Prediction and design of various nanomaterials is a long-term dream in nanoscience and nanotechnology, which depends on the deep understanding on the growth mechanism. Herein, we report the successful prediction on the growth of AlN nanowires by nitriding Al69Ni31 alloy particles across the liquid-solid (β) phase region (1133–1638°C) based on the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism proposed in our previous study. All predictions about the growth of AlN nanowires, the evolutions of lattice parameters and geometries of the coexisting Al-Ni alloy phases are experimentally confirmed quantitatively. The preconditions for the applicability of the PED-VLS mechanism are also clarified. This progress provides the further evidence for the validity of the PED-VLS mechanism and demonstrates a practical guidance for designing and synthesizing different nanomaterials according to corresponding phase diagrams based on the insight into the growth mechanism. Keywords nanowires growth prediction growth mechanism phase equilibrium quantitative experimental analysis

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700