用户名: 密码: 验证码:
Tissue-specific expression, developmentally and spatially regulated alternative splicing, and protein subcellular localization of OsLpa1 in rice
详细信息    查看全文
  • 作者:Hai-ping Lu ; Wei-qin Pang ; Wen-xu Li…
  • 关键词:OsLpa1 ; Low phytic acid ; Expression pattern ; Alternative splicing ; Subcellular localization ; OsLpa1 ; 低植酸
  • 表达模式 ; 可变剪接 ; 亚细胞定位 Q946.2
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:100-109
  • 全文大小:1,371 KB
  • 参考文献:Aravind, L., Wolf, Y.I., Koonin, E.V., 2000. The ATP-CONE: an evolutionarily mobile, ATP-binding regulatory domain. J. Mol. Microbiol. Biotechnol., 2(2):191–194.PubMed
    di Paolo, G., de Camilli, P., 2006. Phosphoinositides in cell regulation and membrane dynamics. Natur., 443(7112): 651–657. http://​dx.​doi.​org/​10.​1038/​nature05185CrossRef
    E, Z.G., Wang, L., Zhu, J.H., 2013. Splicing and alternative splicing in rice and humans. BMB Rep., 46(9):439–447. http://​dx.​doi.​org/​10.​5483/​BMBRep.​2013.​46.​9.​161PubMedCentral CrossRef PubMed
    Filichkin, S.A., Priest, H.D., Givan, S.A., et al., 2010. Genomewide mapping of alternative splicing in Arabidopsis thaliana. Genome Res., 20(1):45–58. http://​dx.​doi.​org/​10.​1101/​gr.​093302.​109PubMedCentral CrossRef PubMed
    Guo, L.L., Yu, Y.H., Xia, X.L., et al., 2010. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol., 10(1):18. http://​dx.​doi.​org/​10.​1186/​1471-2229-10-18PubMedCentral CrossRef PubMed
    Hiei, Y., Komari, T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc., 3(5):824–834. http://​dx.​doi.​org/​10.​1038/​nprot.​2008.​46CrossRef PubMed
    Janetopoulos, C., Devreotes, P., 2006. Phosphoinositide signaling plays a key role in cytokinesis. J. Cell Biol., 174(4):485–490. http://​dx.​doi.​org/​10.​1083/​jcb.​200603156PubMedCentral CrossRef PubMed
    Kim, S.I., Andaya, C.B., Goyal, S.S., et al., 2008a. The rice Oslpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor. Appl. Genet., 117(5):769–779. http://​dx.​doi.​org/​10.​1007/​s00122-008-0818-zCrossRef PubMed
    Kim, S.I., Andaya, C.B., Newman, J.W., et al., 2008b. Isolation and characterization of a low phytic acid rice mutant reveal a mutation in the rice orthologue of maize MIK. Theor. Appl. Genet., 117(8):1291–1301. http://​dx.​doi.​org/​10.​1007/​s00122-008-0863-7CrossRef PubMed
    Lee, H.S., Lee, D.H., Cho, H.K., et al., 2015. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. Plant Cel., 27(2):417–431. http://​dx.​doi.​org/​10.​1105/​tpc.​114.​132134CrossRef
    Lu, H.P., Edwards, M., Wang, Q.Z., et al., 2015. Expression of cytochrome P450 CYP81A6 in rice: tissue specificity, protein subcellular localization, and response to herbicide application. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol)., 16(2):113–122. http://​dx.​doi.​org/​10.​1631/​jzus.​B1400168CrossRef
    Marquez, Y., Brown, J.W.S., Simpson, C., et al., 2012. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res., 22(6):1184–1195. http://​dx.​doi.​org/​10.​1101/​gr.​134106.​111PubMedCentral CrossRef PubMed
    Monserrate, J.P., York, J.D., 2010. Inositol phosphate synthesis and the nuclear processes they affect. Curr. Opin. Cell Biol., 22(3):365–373. http://​dx.​doi.​org/​10.​1016/​j.​ceb.​2010.​03.​006CrossRef PubMed
    Otegui, M.S., Capp, R., Staehelin, L.A., 2002. Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cel., 14(6):1311–1327. http://​dx.​doi.​org/​10.​1105/​tpc.​010486CrossRef
    Raboy, V., 2001. Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trend Plant Sci., 6(10):458–462. http://​dx.​doi.​org/​10.​1016/​S1360-1385(01)02104-5CrossRef
    Raboy, V., 2003. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistr., 64(6):1033–1043. http://​dx.​doi.​org/​10.​1016/​S0031-9422(03)00446-1CrossRef
    Raboy, V., 2007. Forward genetics studies of seed phytic acid. Israel J. Plant Sci., 55(2):171–181. http://​dx.​doi.​org/​10.​1560/​IJPS.​55.​2.​171CrossRef
    Raboy, V., 2009. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci., 177(4): 281–296. http://​dx.​doi.​org/​10.​1016/​j.​plantsci.​2009.​06.​012CrossRef
    Reddy, A.S.N., Roger, M.F., Richardson, D.N., et al., 2012. Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. Front. Plant Sci., 3:18. http://​dx.​doi.​org/​10.​3389/​fpls.​2012.​00018PubMedCentral CrossRef PubMed
    Reddy, A.S.N., Marquez, Y., Kalyna, M., et al., 2013. Complexity of the alternative splicing landscape in plants. Plant Cel., 25(10):3657–3683. http://​dx.​doi.​org/​10.​1105/​tpc.​113.​117523CrossRef
    Rogers, M.F., Thomas, J., Reddy, A.S.N., et al., 2012. SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol., 13(1):R4. http://​dx.​doi.​org/​10.​1186/​gb-2012-13-1-r4PubMedCentral CrossRef PubMed
    Sato, Y., Antonio, B., Namiki, N., et al., 2011. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. BMC Plant Biol., 11(1):10. http://​dx.​doi.​org/​10.​1186/​1471-2229-11-10PubMedCentral CrossRef PubMed
    Sieburth, L.E., Meyerowitz, E.M., 1997. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cel., 9(3):355–365. http://​dx.​doi.​org/​10.​1105/​tpc.​9.​3.​355CrossRef
    Staiger, D., Brown, J.W.S., 2013. Alternative splicing at the intersection of biological timing, development and stress response. Plant Cel., 25(10):3640–3656. http://​dx.​doi.​org/​10.​1105/​tpc.​113.​113803CrossRef
    Stevenson-Paulik, J., Bastidas, R.J., Chiou, S.T., et al., 2005. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. PNA., 102(35):12612–12617. http://​dx.​doi.​org/​10.​1073/​pnas.​0504172102CrossRef
    Suhandono, S., Apriyanto, A., Ihsani, N., 2014. Isolation and characterization of three cassava elongation factor 1a (MeEF1A) promoters. PLoS ONE, 9(1):e84692. http://​dx.​doi.​org/​10.​1371/​journal.​pone.​0084692PubMedCentral CrossRef PubMed
    Thole, J.M., Nielsen, E., 2008. Phosphoinositides in plants: novel functions in membrane trafficking. Curr. Opin. Plant Biol., 11(6):620–631. http://​dx.​doi.​org/​10.​1016/​j.​pbi.​2008.​10.​010CrossRef PubMed
    Thole, J.M., Vermeer, J.E.M., Zhang, Y.L., et al., 2008. ROOT HAIR DEFECTIVE4 encodes a phosphatidylionositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cel., 20(2): 381–395. http://​dx.​doi.​org/​10.​1105/​tpc.​107.​054304CrossRef
    Wang, L., Cao, C.L., Ma, Q.B., et al., 2014. RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol., 14:169. http://​dx.​doi.​org/​10.​1186/​1471-2229-14-169PubMedCentral CrossRef PubMed
    Xu, X.H., Zhao, H.J., Liu, Q.L., et al., 2009. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor. Appl. Genet., 119(1):75–83. http://​dx.​doi.​org/​10.​1007/​s00122-009-1018-1CrossRef PubMed
    York, J.D., 2006. Regulation of nuclear processes by inositol polyphosphates. Biochim. Biophys. Acta, 1761(5-6):552–559. http://​dx.​doi.​org/​10.​1016/​j.​bbalip.​2006.​04.​014CrossRef PubMed
    Zhang, G.J., Guo, G.W., Hu, X.D., et al., 2010. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res., 20(5): 646–654. http://​dx.​doi.​org/​10.​1101/​gr.​100677.​109PubMedCentral CrossRef PubMed
    Zhang, Y., Su, J.B., Duan, S., et al., 2011. A high efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related process. Plant Method., 7(1):30. http://​dx.​doi.​org/​10.​1186/​1746-4811-7-30CrossRef
    Zhao, H.J., Liu, Q.L., Ren, X.L., et al., 2008. Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol. Breedin., 22(4):603–612. http://​dx.​doi.​org/​10.​1007/​s11032-008-9202-6CrossRef
    Zhao, H.J., Cui, H.R., Xu, X.H., et al., 2013. Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon. Theor. Appl. Genet., 126(12):3009–3020. http://​dx.​doi.​org/​10.​1007/​s00122-013-2189-3CrossRef PubMed
    Zhao, Y., Yan, A., Feijo, J., et al., 2010. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cel., 22(12):4031–4044. http://​dx.​doi.​org/​10.​1105/​tpc.​110.​076760CrossRef
  • 作者单位:Hai-ping Lu (1)
    Wei-qin Pang (1)
    Wen-xu Li (1)
    Yuan-yuan Tan (1)
    Qing Wang (2)
    Hai-jun Zhao (1)
    Qing-yao Shu (1)

    1. State Key Laboratory of Rice Biology, Institution of Crop Science, Zhejiang University, Hangzhou, 310029, China
    2. Wuxi Hupper Bioseed Technology Academy Ltd., Wuxi, 214000, China
  • 刊物主题:Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-1783
文摘
The OsLpa1 gene (LOC_Os02g57400) was identified to be involved in phytic acid (PA) metabolism because its knockout and missense mutants reduce PA content in rice grain. However, little is known about the molecular characteristics of OsLpa1 in rice and of its homologues in other plants. In the present study, the spatial pattern of OsLpa1 expression was revealed using OsLpa1 promoter::GUS transgenic plants (GUS: β-glucuronidase); GUS histochemical assay showed that OsLpa1 was strongly expressed in stem, leaf, and root tissues, but in floral organ it is expressed mainly and strongly in filaments. In seeds, GUS staining was concentrated in the aleurone layers; a few blue spots were observed in the outer layers of embryo, but no staining was observed in the endosperm. Three OsLpa1 transcripts (OsLpa1.1, OsLpa1.2, OsLpa1.3) are produced due to alternative splicing; quantitative reversetranscriptase polymerase chain reaction (RT-PCR) analysis revealed that the abundance of OsLpa1.3 was negligible compared with OsLpa1.1 and OsLpa1.2 in all tissues. OsLpa1.2 is predominant in germinating seeds (about 5 times that of OsLpa1.1), but its abundance decreases quickly with the development of seedlings and plants, whereas the abundance of OsLpa1.1 rises and falls, reaching its highest level in 45-d-old plants, with abundance greater than that of OsLpa1.2 in both leaves and roots. In seeds, the abundance of OsLpa1 continuously increases with seed growth, being 27.5 and 15 times greater in 28-DAF (day after flowering) seeds than in 7-DAF seeds for OsLpa1.1 and OsLpa1.2, respectively. Transient expression of chimeric genes with green fluorescence protein (GFP) in rice protoplasts demonstrated that all proteins encoded by the three OsLpa1 transcripts are localized to the chloroplast. Keywords OsLpa1 Low phytic acid Expression pattern Alternative splicing Subcellular localization

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700