用户名: 密码: 验证码:
Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation, and gene over-expression
详细信息    查看全文
  • 作者:Jian-zhong Xu ; Wei-guo Zhang
  • 关键词:Escherichia coli ; Corynebacterium glutamicum ; DNA manipulation ; Site ; directed mutagenesis ; Gene inactivation ; Gene over ; expression ; 大肠杆菌 ; 谷氨酸棒杆菌 ; DNA 操作方法 ; 定点突变 ; 基因失活 ; 基因过表达
  • Q754
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:83-99
  • 全文大小:960 KB
  • 参考文献:Amador, E., Franciso, J., Castro, J.M., 2000. A Brevibacterium lactofermentum 16S rRNA gene used as target site for homologous recombination. FEMS Microbiol. Lett., 185(2):199–204. http://​dx.​doi.​org/​10.​1111/​j.​1574-6968.​2000.​tb09062.​xPubMed CrossRef
    Adachi, Y., Fukuhara, C., 2012. TA strategy for rapid and efficient site-directed mutagenesis. Anal. Biochem., 431(1): 66–68. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2012.​08.​030PubMed CrossRef
    Baba, T., Ara, T., Hasegawa, M., et al., 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol., 2:2006–2008. http://​dx.​doi.​org/​10.​1038/​msb4100050CrossRef
    Berg, C.M., Berg, D.E., 1996. Transposable element tools for microbial genetics. In: Neidhardt, F.C., Curtiss III, R.C., Ingraham, J.L., et al. (Eds.), Escherichia coli and Salmonella. ASM Press, Washington, DC,USA, p.2588–2612.
    Barettino, D., Feigenbutz, M., Valcárcel, R., et al., 1994. Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Res., 22(3):541–542. http://​dx.​doi.​org/​10.​1093/​nar/​22.​3.​541PubMedCentral PubMed CrossRef
    Boles, E., Miosga, T., 1995. A rapid and highly efficient method for PCR-based site-directed mutagenesis using only one new primer. Curr. Genet., 28(2):197–198. http://​dx.​doi.​org/​10.​1089/​pho.​2008.​2449PubMed CrossRef
    Brøns-Poulsen, J., Petersen, N., Horder, M., et al., 1998. An improved PCR based method for site directed mutagenesis using megaprimers. Mol. Cell. Probe., 12(6):345–348. http://​dx.​doi.​org/​10.​1006/​mcpr.​1998.​0187CrossRef
    Becker, J., Zelder, O., Häfner, S., et al., 2011. From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng., 13(2):159–168. http://​dx.​doi.​org/​10.​1016/​j.​ymben.​2011.​01.​003PubMed CrossRef
    Causey, T.B., Shanmugam, K.T., Yomano, L.P., et al., 2004. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. PNA., 101(8):2235–2240. http://​dx.​doi.​org/​10.​1073/​pnas.​0308171100CrossRef
    Chapnik, N., Sherman, H., Frog, O., 2008. A one-tube sitedirected mutagenesis method using PCR and primer extension. Anal. Biochem., 372(2):255–257. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2007.​07.​020PubMed CrossRef
    Chatellier, J., Mazza, A., Brousseau, R., et al., 1995. Codonbased combinatorial alanine scanning site-directed mutagenesis: design, implementation, and polymerase chain reaction screening. Anal. Biochem., 229(2):282–290. http://​dx.​doi.​org/​10.​1006/​abio.​1995.​1414PubMed CrossRef
    Chiu, J., March, P.E., Lee, R., et al., 2004. Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res., 32(21):e174. http://​dx.​doi.​org/​10.​1093/​nar/​gnh172PubMedCentral PubMed CrossRef
    Cornet, F., Mortier, I., Patte, J., et al., 1994. Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J. Bacteriol., 176(11):3188–3195.PubMedCentral PubMed
    Correia, A., Martin, J.F., Castro, J.M., 1996. Targeted integration of foreign genes into repetitive sequences of the Brevibacterium lactofermentum chromosome. FEMS Microbiol. Lett., 142(2-3):259–264. http://​dx.​doi.​org/​10.​1111/​j.​1574-6968.​1996.​tb08440.​xCrossRef
    Dai, Z.M., Zhu, X.J., Chen, Q., et al., 2007. PCR-suppression effect: kinetic analysis and application to representative or long molecule biased PCR-based amplification of complex samples. J. Biotechnol., 128(3):435–443. http://​dx.​doi.​org/​10.​1016/​j.​jbiotec.​2006.​10.​018PubMed CrossRef
    Datsenko, K.A., Wanner, B.L., 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNA., 97(12):6640–6645. http://​dx.​doi.​org/​10.​1073/​pnas.​120163297CrossRef
    Davis, D.P., Seqaloff, D.L., 2002. N-linked carbohydrates on G protein-coupled receptors: mapping sites of attachment and determining functional roles. Methods Enzymol., 343:137–156. http://​dx.​doi.​org/​10.​1016/​S0076-6879(02)43136-9CrossRef
    Davis, M.D., Wonderling, R.S., Walker, S.C., et al., 1999. Analysis of the effects of charge cluster mutations in adeno-associated virus Rep68 protein in vitro. J. Virol., 73(3):2084–2093.PubMedCentral PubMed
    Dean, D., 1981. A plasmid cloning vector for the direct selection of strains carrying recombinant plasmids. Gen., 15(1):99–102. http://​dx.​doi.​org/​10.​1016/​0378-1119(81)90108-6CrossRef
    Diatchenko, L., Lau, Y.F., Campbell, A.P., et al., 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. PNA., 93(12):6025–6030. http://​dx.​doi.​org/​10.​1073/​pnas.​93.​12.​6025CrossRef
    Donnenberg, M.S., Kaper, J.B., 1991. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun., 59(12):4310–4317.PubMedCentral PubMed
    Evans, P.M., Liu, C., 2005. SiteFind: a software tool for introducing a restriction site as a marker for successful site-directed mutagenesis. BMC Mol. Biol., 6(1):22. http://​dx.​doi.​org/​10.​1186/​1471-2199-6-22PubMedCentral PubMed CrossRef
    Fushan, A.A., Drayna, D.T., 2009. MALS: an efficient strategy for multiple site-directed mutagenesis employing a combination of DNA amplification, ligation and suppression PCR. BMC Biotechnol., 9(1):83. http://​dx.​doi.​org/​10.​1186/​1472-6750-9-83PubMedCentral PubMed CrossRef
    Gay, P., Le Coq, D., Steinmetz, M., et al., 1983. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J. Bacteriol., 153(3):1424–1431.PubMedCentral PubMed
    Georgi, T., Rittmann, D., Wendisch, V.F., 2005. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab. Eng., 7(4):291–301. http://​dx.​doi.​org/​10.​1016/​j.​ymben.​2005.​05.​001PubMed CrossRef
    Ho, S.N., Hunt, H.D., Horton, R.M., et al., 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gen., 77(1):51–59. http://​dx.​doi.​org/​10.​1016/​0378-1119(89)90358-2CrossRef
    Hogrefe, H.H., Cline, J., Youngblood, G.L., et al., 2002. Creating randomized amino acid libraries with the QuikChange® Multi Site-Directed Mutagenesis Kit. Biotechnique., 33(5):1158–1165.
    Holland, E.G., Acca, F.E., Belanger, K.M., et al., 2015. In vivo elimination of parental clones in general and site-directed mutagenesis. J. Immun. Method., 417:67–75. http://​dx.​doi.​org/​10.​1016/​j.​jim.​2014.​12.​008CrossRef
    Homilton, C.M., Aldea, M.M., Washburm, B.K., et al., 1989. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol., 171(9):4617–4622.
    Horton, R.M., Cai, Z., Ho, S.N., et al., 1990. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechnique., 8(5):528–535.
    Hou, X.H., Chen, X.D., Zhang, Y., et al., 2012. L-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acid., 43(6):2301–2311. http://​dx.​doi.​org/​10.​1007/​s00726-012-1308-9CrossRef
    Hu, J., Li, Y., Zhang, H., et al., 2014. Construction of a novel expression system for use in Corynebacterium glutamicum. Plasmi., 75:18–26. http://​dx.​doi.​org/​10.​1016/​j.​plasmid.​2014.​07.​005CrossRef
    Ikeda, M., Katsumata, R., 1998. A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology, 144(Pt 7):1863–1868. http://​dx.​doi.​org/​10.​1099/​00221287-144-7-1863PubMed CrossRef
    Imai, Y., Matsushima, Y., Sugimura, T., et al., 1991. A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res., 19(10):2785. http://​dx.​doi.​org/​10.​1093/​nar/​19.​10.​2785PubMedCentral PubMed CrossRef
    Imaizumi, A., Takikawa, R., Chie, K., et al., 2005. Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli. J. Biotechnol., 117(1):111–118. http://​dx.​doi.​org/​10.​1016/​j.​jbiotec.​2004.​12.​014PubMed CrossRef
    Inui, M., Suda, M., Okina, S., 2007. Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiolog., 153(8):2491–2504. http://​dx.​doi.​org/​10.​1099/​mic.​0.​2006/​005587-0
    Johnston, C., Polard, P., Clavers, J.P., 2013. The DpnI/DpnII pneumococcal system, defense against foreign attack without compromising genetic exchange. Mobile Genet. Elem., 3(4):e25582. http://​dx.​doi.​org/​10.​4161/​mge.​25582CrossRef
    Jones, D.H., Winistorfer, S.C., 1991. Site-specific mutagenesis and DNA recombination by using PCR to generate recombinant circles in vitro or by recombination of linear PCR products in vivo. Method., 2(1):2–10. http://​dx.​doi.​org/​10.​1016/​S1046-2023(05)80120-3CrossRef
    Judson, N., Mekalanos, J.J., 2000. Transposon-based approaches to identify essential bacterial genes. Trends Microbiol., 8(11):521–526. http://​dx.​doi.​org/​10.​1016/​S0966-842X(00)01865-5PubMed CrossRef
    Kalinowski, J., Bathe, B., Daniela, B., et al., 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol., 104(1-3):5–25. http://​dx.​doi.​org/​10.​1016/​S0168-1656(03)00154-8PubMed CrossRef
    Karnik, A., Karnik, R., Grefen, C., 2013. SDM-Assist software to design site-directed mutagenesis primers introducing “silent” restriction sites. BMC Bioinformatic., 14(1): 105–114. http://​dx.​doi.​org/​10.​1186/​1471-2105-14-105CrossRef
    Kato, C., Ohimiya, R., Mizuno, T., 1998. A rapid method for disrupting gene in Escherichia coli genome. Biosci. Biotechnol. Biochem., 62(9):1826–1829. http://​dx.​doi.​org/​10.​1271/​bbb.​62.​1826PubMed CrossRef
    Ke, S.H., Madison, E.L., 1997. Rapid and efficient mutagenesis by single-tube “megaprimer” PCR method. Nucleic Acids Res., 25(16):3371–3372. http://​dx.​doi.​org/​10.​1093/​nar/​25.​16.​3371PubMedCentral PubMed CrossRef
    Khare, V., Eckert, K.A., 2002. The proofreading 3'-5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis. Mutat. Res.-Fund. Mol. M., 510(1-2):45–54. http://​dx.​doi.​org/​10.​1016/​S0027-5107(02)00251-8CrossRef
    Kim, N.S., 2015. Transposable elements and genomics. Genes Genom., 37(2):111–112. http://​dx.​doi.​org/​10.​1007/​s13258-014-0262-1CrossRef
    Kim, Y.G., Maas, S., 2000. Multiple site mutagenesis with high targeting efficiency in one cloning step. Biotechnique., 28:196–198.
    Kirsch, R.D., Joly, E., 1998. An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res., 26(7):1848–1850. http://​dx.​doi.​org/​10.​1093/​nar/​26.​7.​1848PubMedCentral PubMed CrossRef
    Lacks, S., Greenberg, B., 1977. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J. Mol. Biol., 114(1):153–168. http://​dx.​doi.​org/​10.​1016/​0022-2836(77)90289-3PubMed CrossRef
    Li, J., Li, C.H., Xiao, W., et al., 2008. Site-directed mutagenesis by combination of homologous recombination and DpnI digestion of the plasmid template in Escherichia coli. Anal. Biochem., 373(2):389–391. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2007.​10.​034PubMed CrossRef
    Liang, X.Q., Pen, L.S., Li, K., et al., 2012. A method for multisite-directed mutagenesis based on homologous recombination. Anal. Biochem., 427(1):99–101. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2012.​05.​002PubMed CrossRef
    Liew, K.S., Ho, W.S., Pang, S.L., et al., 2015. Development and characterization of microsatellite markers in sawih tree (Duabanga moluccana Blume) using ISSRsuppression PCR techniques. Physiol. Mol. Biol. Plant., 21(1):163–165. http://​dx.​doi.​org/​10.​1007/​s12298-014-0262-2CrossRef
    Ling, M.M., Robinson, B.H., 1997. Approaches to DNA mutagenesis: an overview. Anal. Biochem., 254(2):157–178. http://​dx.​doi.​org/​10.​1006/​abio.​1997.​2428PubMed CrossRef
    Liu, H., Naismith, J.H., 2008. An efficient one-step sitedirected deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol., 8(1):91. http://​dx.​doi.​org/​10.​1186/​1472-6750-8-91PubMedCentral PubMed CrossRef
    Lu, L., Patel, H., Bisser, J.J., 2002. Optimizing DpnI digestion conditions to detect replicated DNA. Biotechnique., 33(2):316–318.
    Luo, F.G., Du, X.L., Weng, T.T., et al., 2012. Efficient multisite-directed mutagenesis directly from genomic template. J. Biosci., 37(Suppl. 1):965–969. http://​dx.​doi.​org/​10.​1007/​s12038-012-9257-8PubMed CrossRef
    Maloy, S.R., Nunn, W.D., 1981. Selection for loss of tetracycline resistance by Escherichia coli. J. Bacteriol., 145(2): 1110–1112.PubMedCentral PubMed
    Mandaci, S., 2011. Site-directed mutagenesis as the cornerstone of protein engineering: from basic biotechnology to industrial enzymes. Curr. Opin. Biotechnol., 22(Suppl. 1): S39. http://​dx.​doi.​org/​10.​1016/​j.​copbio.​2011.​05.​093CrossRef
    Martens, J.H., Barg, H., Warren, M., et al., 2002. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol., 58(3):278–285. http://​dx.​doi.​org/​10.​1007/​s00253-001-0902-7
    Martin, A., Toselli, E., Rosier, M.F., et al., 1995. Rapid and high efficiency site-directed mutagenesis by improvement of the homologous recombination technique. Nucleic Acids Res., 23(9):1642–1643. http://​dx.​doi.​org/​10.​1093/​nar/​23.​9.​1642PubMedCentral PubMed CrossRef
    Meetei, A.R., Rao, M.R.S., 1998. Generation of multiple site-specific mutations in a single polymerase chain reaction product. Anal. Biochem., 264(2):288–291. http://​dx.​doi.​org/​10.​1006/​abio.​1998.​2866PubMed CrossRef
    Mitchell, L.A., Cai, Y.Z., Taylor, M., et al., 2013. Multichange isothermal mutagenesis: a new strategy for multiple site-directed mutations in plasmid DNA. ACS Synth. Biol., 2(8):473–477. http://​dx.​doi.​org/​10.​1021/​sb300131wPubMedCentral PubMed CrossRef
    Montaldo, H.H., 2006. Genetic engineering applications in animal breeding. Electron. J. Biotechnol., 9(2):157–170. http://​dx.​doi.​org/​10.​2225/​vol9-issue2-fulltext-7CrossRef
    Muyrers, J.P.P., Zhang, Y.M., Stewart, A.F., 2001. Techniques: recombinogenic engineering—new options for cloning and manipulating DNA. Trends Biochem. Sci., 26(5): 325–331. http://​dx.​doi.​org/​10.​1016/​S0968-0004(00)01757-6PubMed CrossRef
    Nakashima, N., Miyazaki, K., 2014. Bacterial cellular engineering by genome editing and gene inactivation. Int. J. Mol. Sci., 15(2):2773–2793. http://​dx.​doi.​org/​10.​3390/​ijms15022773PubMedCentral PubMed CrossRef
    Nossal, N.G., 1974. DNA synthesis on a double-stranded DNA template by the T4 bacteriophage DNA polymerase and the T4 gene 32 DNA unwinding protein. J. Biol. Chem., 249(17):5668–5676.PubMed
    Patel, D.H., Wi, S.G., Bae, H.J., 2009. Modification of overlap expression PCR: a mutagenic approach. Indian J. Biotechnol., 8(2):181–186.
    Peng, R.H., Xiong, A.S., Yao, Q.H., 2006. A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Appl. Microbiol. Biotechnol., 73(1):234–240. http://​dx.​doi.​org/​10.​1007/​s00253-006-0583-3PubMed CrossRef
    Perlak, F.J., 1990. Single step large scale site-directed in vitro mutagenesis using multiple oligonucleotides. Nucleic Acids Res., 18(24):7457–7458. http://​dx.​doi.​org/​10.​1093/​nar/​18.​24.​7457PubMedCentral PubMed CrossRef
    Philippe, N., Alcaraz, J.P., Coursange, E., et al., 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmi., 51(3):246–255. http://​dx.​doi.​org/​10.​1016/​j.​plasmid.​2004.​02.​003CrossRef
    Picard, V., Ersdal-Badju, E., Lu, A., et al., 1994. A rapid and efficient one-tube PCR based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res., 22(13): 2587–2591. http://​dx.​doi.​org/​10.​1093/​nar/​22.​13.​2587PubMedCentral PubMed CrossRef
    Poustka, A., Rackwitez, H.R., Frischauf, A.M., et al., 1984. Selective isolation of cosmid clones by homologous recombination in Escherichia coli. PNA., 81(13):4129–4133. http://​dx.​doi.​org/​10.​1073/​pnas.​81.​13.​4129CrossRef
    Qi, D., Scholthof, K.B.G., 2008. A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion and substitution mutagenesis. J. Virol. Method., 149(1):85–90. http://​dx.​doi.​org/​10.​1016/​j.​jviromet.​2008.​01.​002CrossRef
    Reyrat, J.M., Pelicic, V., Gicquel, B., et al., 1998. Counterselectable markers: untapped tools for bacterial genetics and pathogenesis. Infect. Immun., 66(9):4011–4017.PubMedCentral PubMed
    Saeedi, P., Moosaabadi, J.M., Sebtahmadi, S.S., et al., 2012. Site-directed mutagenesis in bacteriorhodopsin mutants and their characterization for bioelectrical and biotechnological equipment. Biotechnol. Lett., 34(3):455–462. http://​dx.​doi.​org/​10.​1007/​s10529-011-0731-4PubMed CrossRef
    Salerno, J.C., Jones, R.J., Erdogan, E., et al., 2005. A singlestage polymerase-based protocol for the introduction of deletions and insertions without subcloning. Mol. Biotechnol., 29(3):225–232. http://​dx.​doi.​org/​10.​1385/​MB:29:3:225PubMed CrossRef
    Sawitzke, J.A., Thomason, L.C., Bubunenko, M., et al., 2013. Recombineering: using drug cassettes to knock out genes in vivo. Methods Enzymol., 533:79–102. http://​dx.​doi.​org/​10.​1016/​B978-0-12-420067-8.​00007-6PubMed CrossRef
    Schäfer, A., Tauch, A., Jäger, W., et al., 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutumicum. Gen., 145(1):69–73. http://​dx.​doi.​org/​10.​1016/​0378-1119(94)90324-7CrossRef
    Seraphin, B., Kandels-Lewis, S., 1996. An efficient PCR mutagenesis strategy without gel purification step that is amenable to automation. Nucleic Acids Res., 24(16): 3276–3277. http://​dx.​doi.​org/​10.​1093/​nar/​24.​16.​3276PubMedCentral PubMed CrossRef
    Seyfang, A., Jin, J.H., 2004. Multiple site-directed mutagenesis of more than 10 sites simultaneously and in a single round. Anal. Biochem., 324(2):285–291. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2003.​10.​012PubMed CrossRef
    Shankarappa, B., Vijayananda, K., 1992. SILMUT: a computer program for the identification of regions suitable for silent mutagenesis to introduce restriction enzyme recognition sequences. Biotechnique., 12(6):882–884.
    Siloto, R.M.P., Weselake, R.J., 2012. Site saturation mutagenesis: methods and applications in protein engineering. Biocatal. Agric. Biotechnol., 1(3):181–189. http://​dx.​doi.​org/​10.​1016/​j.​bcab.​2012.​03.​010
    Siwek, W., Czapinska, H., Bochtler, M., et al., 2012. Crystal structure and mechanism of action of the N6-methyladenine-dependent type IIM restriction endonuclease R. DpnI. Nucleic Acids Res., 40(15):7563–7572. http://​dx.​doi.​org/​10.​1093/​nar/​gks428PubMed CrossRef
    Stoynova, L., Solórzano, R., Collins, E.D., 2004. Generation of large deletion mutants from plasmid DNA. Biotechnique., 36:402–406.
    Sun, S.H., Huang, H., Qi, Y.C., et al., 2015. Complementary annealing mediated by exonuclease: a method for seamless cloning and conditioning site-directed mutagenesis. Biotechnol. Biotec. Eq., 29(1):105–110. http://​dx.​doi.​org/​10.​1080/​13102818.​2014.​988094CrossRef
    Suzuki, N., Okai, N., Nonaka, H., et al., 2006. Highthroughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl. Environ. Microbiol., 72(5):3750–3755. http://​dx.​doi.​org/​10.​1128/​AEM.​72.​5.​3750-3755.​2006PubMedCentral PubMed CrossRef
    Tauch, A., Götker, S., Pühler, A., et al., 2002. The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. J. Biotechnol., 99(1):79–91. http://​dx.​doi.​org/​10.​1016/​S0168-1656(02)00159-1PubMed CrossRef
    Tian, J., Liu, Q., Dong, S., et al., 2010. A new method for multisite-directed mutagenesis. Anal. Biochem., 406(1):83–85. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2010.​06.​018PubMed CrossRef
    Tilly, K., Elias, A.F., Bono, J.L., et al., 2000. DNA exchange and insertional inactivation in spirochetes. J. Mol. Microbiol. Biotechnol., 2(4):433–442.PubMed
    Tseng, W.C., Lin, J.W., Wei, T.Y., et al., 2008. A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Anal. Biochem., 375(2):376–378. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2007.​12.​013PubMed CrossRef
    Tu, H.M., Sun, S.S.M., 1996. Generation of a combination of mutations by use of multiple mutagenic oligonucleotides. Biotechnique., 20(3):352–354.
    Turchin, A., Lawler, J.F., 1999. The primer generator: a program that facilitates the selection of oligonucleotides for site-directed mutagenesis. Biotechnique., 26(4):672–676.
    Urban, A., Nenkirchen, S., Jaeger, K.E., 1997. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res., 25(11):2227–2228. http://​dx.​doi.​org/​10.​1093/​nar/​25.​11.​2227PubMedCentral PubMed CrossRef
    Wan, H.S., Li, Y.W., Fan, Y., et al., 2012. A site-directed mutagenesis method particularly useful for creating otherwise difficult-to-make mutants and alanine scanning. Anal. Biochem., 420(2):163–170. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2011.​09.​019PubMed CrossRef
    Wäneskog, M., Bjerling, P., 2014. Multi-fragment sitedirected mutagenic overlap extension polymerase chain reaction as a competitive alternative to the enzymatic assembly method. Anal. Biochem., 444:32–37. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2013.​09.​021PubMed CrossRef
    Wang, H.P., Zhou, N., Ding, F., et al., 2011. An efficient approach for site-directed mutagenesis using central overlapping primers. Anal. Biochem., 418(2):304–306. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2011.​07.​008PubMed CrossRef
    Wang, X.H., Pineau, C., Guschinskaya, N., et al., 2012. Cysteine scanning mutagenesis and disulfide mapping analysis of arrangement of GspC and GspD protomers within the Type 2 secretion system. J. Biol. Chem., 287(23): 19082–19093. http://​dx.​doi.​org/​10.​1074/​jbc.​M112.​346338PubMedCentral PubMed CrossRef
    Weiner, M.P., Costa, G.L., Schoettlin, W., et al., 1994. Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene, 151(1-2):119–123. http://​dx.​doi.​org/​10.​1016/​0378-1119(94)90641-6PubMed CrossRef
    Wu, D.G., Guo, X.W., Lu, J., et al., 2013. A rapid and efficient one-step site-directed deletion, insertion, and substitution mutagenesis protocol. Anal. Biochem., 434(2):254–258. http://​dx.​doi.​org/​10.​1016/​j.​ab.​2012.​11.​028PubMed CrossRef
    Xu, D.Q., Tan, Y.Z., Huan, X.J., et al., 2010. Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J. Microbiol. Method., 80(1):86–92. http://​dx.​doi.​org/​10.​1016/​j.​mimet.​2009.​11.​003CrossRef
    Xu, J.Z., Zhang, J.L., Guo, Y.F., et al., 2013. Improvement of cell growth and production of L-lysine by genetically modified Corynebacterium. glutamicum during growth on molasses. J. Ind. Microbiol. Biotechnol., 40(12): 1423–1432. http://​dx.​doi.​org/​10.​1007/​s10295-013-1329-8PubMed CrossRef
    Xu, J.Z., Han, M., Zhang, J.Z., et al., 2014a. Improvement of L-lysine production combines with minimization of by-products synthesis in Corynebacterium glutamicum. J. Chem. Technol. Biotechnol., 89(12):1924–1933. http://​dx.​doi.​org/​10.​1002/​jctb.​4278CrossRef
    Xu, J.Z., Han, M., Zhang, J.Z., et al., 2014b. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acid., 46(9):2165–2175. http://​dx.​doi.​org/​10.​1007/​s00726-014-1768-1CrossRef
    Xu, J.Z., Xia, X.H., Zhang, J.Z., et al., 2014c. A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers. Plasmi., 72:9–17. http://​dx.​doi.​org/​10.​1016/​j.​plasmid.​2014.​02.​001CrossRef
    Xu, J.Z., Zhang, J.L., Guo, Y.F., et al., 2015. Genetically modifying aspartate aminotransferase and aspartate ammonia-lyase affects metabolite accumulation in L-lysine producing strain derived from Corynebacterium glutamicum ATCC13032. J. Mol. Catal. B Enzym., 113:82–89. http://​dx.​doi.​org/​10.​1016/​j.​molcatb.​2014.​12.​015CrossRef
    Xu, M.J., Zhang, R.Z., Liu, X.Y., et al., 2013. Improving the acidic stability of a β-mannanase from Bacillus subtilis by site-directed mutagenesis. Process Biochem., 48(8): 1166–1173. http://​dx.​doi.​org/​10.​1016/​j.​procbio.​2013.​06.​014CrossRef
    Yu, D.G., Ellis, H.M., 2000. An efficient recombination system for chromosome engineering in Escherichia coli. PNA., 97(11):5978–5983. http://​dx.​doi.​org/​10.​1073/​pnas.​100127597CrossRef
    Zhang, X.L., Jantama, K., Moore, J.C., et al., 2007. Production of L-alanine by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol., 77(2):355–366. http://​dx.​doi.​org/​10.​1007/​s00253-007-1170-yPubMed CrossRef
    Zhang, Y.M., Buchholz, F., Muyrers, J.P.P., et al., 1998. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet., 20(20):123–128. http://​dx.​doi.​org/​10.​1038/​2417PubMed CrossRef
    Zheng, L., Baumann, U., Reymond, J.L., 2004. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res., 32(14):e115. http://​dx.​doi.​org/​10.​1093/​nar/​gnh110PubMedCentral PubMed CrossRef
    Zhou, S., Causey, T.B., Hasona, A., et al., 2003. Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl. Environ. Microbiol., 69(1):399–407. http://​dx.​doi.​org/​10.​1128/​AEM.​69.​1.​399-407.​2003PubMedCentral PubMed CrossRef
  • 作者单位:Jian-zhong Xu (1)
    Wei-guo Zhang (1)

    1. The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
  • 刊物主题:Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-1783
文摘
With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. Keywords Escherichia coli Corynebacterium glutamicum DNA manipulation Site-directed mutagenesis Gene inactivation Gene over-expression

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700