用户名: 密码: 验证码:
A hybrid short-term load forecasting method based on improved ensemble empirical mode decomposition and back propagation neural network
详细信息    查看全文
  • 作者:Yun-luo Yu ; Wei Li ; De-ren Sheng…
  • 关键词:Ensemble empirical mode decomposition (EEMD) ; Intrinsic mode functions (IMFs) ; Back propagation neural network (BPNN) ; Short ; term load forecasting (STLF) ; 集合经验模态分解
  • 内禀模态函数 反向传播神经网络 ; 短期负荷预测 ; TM715
  • 刊名:Journal of Zhejiang University - Science A
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:101-114
  • 全文大小:887 KB
  • 参考文献:AEMO (Australian Energy Market Operator), 2007}. Australian Energy Market Operator. Available from http://​www.​aemo.​com.​au [Accessed on Aug. 21, 2015]
    Amjady, N., Keynia, F., 2009. Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy, 34(1):46–57. http://​dx.​doi.​org/​10.​1016/​j.​energy.​2008.​09.​020CrossRef
    Bahrami, S., Hooshmand, R.A., Parastegari, M., 2014. Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm. Energy, 72:434–442. http://​dx.​doi.​org/​10.​1016/​j.​energy.​2014.​05.​065CrossRef
    Bunn, D.W., 2000. Forecasting loads and prices in competitive power markets: the technology of power system competition. Proceedings of the IEEE, 88(2):163–169. http://​dx.​doi.​org/​10.​1109/​5.​823996CrossRef
    Chatfield, C., 1988. What is the ‘best’ method of forecasting? Journal of Applied Statistics, 15(1):19–38. http://​dx.​doi.​org/​10.​1080/​0266476880000000​3CrossRef
    Che, J., Wang, J., Wang, G., 2012. An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting. Energy, 37(1):657–664. http://​dx.​doi.​org/​10.​1016/​j.​energy.​2011.​10.​034CrossRef
    Chen, Y., Yang, Y., Liu, C., et al., 2015. A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting. Applied Mathematical Modelling, 39(9):2617–2632. http://​dx.​doi.​org/​10.​1016/​j.​apm.​2014.​10.​065CrossRef MathSciNet
    Goia, A., May, C., Fusai, G., 2010. Functional clustering and linear regression for peak load forecasting. International Journal of Forecasting, 26(4):700–711. http://​dx.​doi.​org/​10.​1016/​j.​ijforecast.​2009.​05.​015CrossRef
    Guo, Z., Zhao, W., Lu, H., et al., 2012. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy, 37(1): 241–249. http://​dx.​doi.​org/​10.​1016/​j.​renene.​2011.​06.​023CrossRef
    Hernandez, L., Baladrón, C., Aguiar, J.M., et al., 2013. Short-term load forecasting for microgrids based on artificial neural networks. Energies, 6(3):1385–1408. http://​dx.​doi.​org/​10.​3390/​en6031385CrossRef
    Huang, N.E., Shen, Z., Long, S.R., et al., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971):903–995. http://​dx.​doi.​org/​10.​1098/​rspa.​1998.​0193CrossRef MathSciNet MATH
    Huang, S., Chang, J., Huang, Q., et al., 2014. Monthly stream flow prediction using modified EMD-based support vector machine. Journal of Hydrology, 511:764–775. http://​dx.​doi.​org/​10.​1016/​j.​jhydrol.​2014.​01.​062CrossRef
    Jenkins, G.M., 1982. Some practical aspects of forecasting in organizations. Journal of Forecasting, 1(1):3–21. http://​dx.​doi.​org/​10.​1002/​for.​3980010103CrossRef
    Li, Y., Li, Z., Jin, M., et al., 2013. Multiple-step ahead traffic forecasting based on GMM embedded BPnetwork. Procedia -Social and Behavioral Sciences, 96:1014–1024. http://​dx.​doi.​org/​10.​1016/​j.​sbspro.​2013.​08.​116CrossRef
    Liu, H., Tian, H., Li, Y., 2015. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system. Journal of Wind Engineering and Industrial Aerodynamics, 141:27–38. http://​dx.​doi.​org/​10.​1016/​j.​jweia.​2015.​02.​004CrossRef
    Mariyappa, N., Sengottuvel, S., Patel, R., et al., 2015. Denoising of multichannel MCG data by the combination of EEMD and ICA and its effect on the pseudo current density maps. Biomedical Signal Processing and Control, 18:204–213. http://​dx.​doi.​org/​10.​1016/​j.​bspc.​2014.​12.​012CrossRef
    NYISO (New York Independent System Operator), 2004. New York Independent System Operator. Available from http://​www.​nyiso.​com [Accessed on Aug.21, 2015].
    Rahman, S., Bhatnagar, R., 1988. An expert system based algorithm for short term load forecast. IEEE Transactions on Power Systems, 3(2):392–399. http://​dx.​doi.​org/​10.​1109/​59.​192889CrossRef
    Senjyu, T., Mandal, P., Uezato, K., et al., 2005. Next day load curve forecasting using hybrid correction method. IEEE Transactions on Power Systems, 20(1):102–109. http://​dx.​doi.​org/​10.​1109/​TPWRS.​2004.​831256CrossRef
    Sudheer, G., Suseelatha, A., 2015. Short term load forecasting using wavelet transform combined with Holt–Winters and weighted nearest neighbor models. International Journal of Electrical Power & Energy Systems, 64:340–346. http://​dx.​doi.​org/​10.​1016/​j.​ijepes.​2014.​07.​043CrossRef
    Trudnowski, D.J., McReynolds, W.L., Johnson, J.M., 2001. Real-time very short-term load prediction for powersystem automatic generation control. IEEE Transactions on Control Systems Technology, 9(2):254–260. http://​dx.​doi.​org/​10.​1109/​87.​911377CrossRef
    Wang, H., Schulz, N.N., 2006. Using AMR data for load estimation for distribution system analysis. Electric Power Systems Research, 76(5):336–342. http://​dx.​doi.​org/​10.​1016/​j.​epsr.​2005.​08.​003CrossRef
    Wang, J., Wang, J., Li, Y., et al., 2014. Techniques of applying wavelet de-noising into a combined model for short-term load forecasting. International Journal of Electrical Power & Energy Systems, 62:816–824. http://​dx.​doi.​org/​10.​1016/​j.​ijepes.​2014.​05.​038CrossRef
    Wang, L., Zeng, Y., Chen, T., 2015. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Systems with Applications, 42(2):855–863. http://​dx.​doi.​org/​10.​1016/​j.​eswa.​2014.​08.​018CrossRef
    Wang, W., Chau, K., Qiu, L., et al., 2015. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environmental Research, 139:46–54. http://​dx.​doi.​org/​10.​1016/​j.​envres.​2015.​02.​002CrossRef
    Wu, J., Wang, J., Lu, H., et al., 2013. Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model. Energy Conversion and Management, 70:1–9. http://​dx.​doi.​org/​10.​1016/​j.​enconman.​2013.​02.​010CrossRef
    Wu, Z., Huang, N.E., 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(01):1–41. http://​dx.​doi.​org/​10.​1142/​S179353690900004​7CrossRef
    Xiong, T., Bao, Y., Hu, Z., 2014. Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework. International Journal of Electrical Power & Energy Systems, 63:353–362. http://​dx.​doi.​org/​10.​1016/​j.​ijepes.​2014.​06.​010CrossRef
    Yang, C.Y., Wu, T.Y., 2015. Diagnostics of gear deterioration using EEMD approach and PCA process. Measurement, 61:75–87. http://​dx.​doi.​org/​10.​1016/​j.​measurement.​2014.​10.​026CrossRef
    Yang, Y., Wu, J., Chen, Y., et al., 2013. A new strategy for short-term load forecasting. Abstract and Applied Analysis, 2013:208964. http://​dx.​doi.​org/​10.​1155/​2013/​208964
    Yang, Y., Chen, H., Jiang, T., 2015. Nonlinear response prediction of cracked rotor based on EMD. Journal of the Franklin Institute, 352(8):3378–3393. http://​dx.​doi.​org/​10.​1016/​j.​jfranklin.​2014.​12.​015CrossRef MathSciNet
  • 作者单位:Yun-luo Yu (1)
    Wei Li (1)
    De-ren Sheng (1)
    Jian-hong Chen (1)

    1. Institute of Thermal Science and Power System, Zhejiang University, Hangzhou, 310027, China
  • 刊物类别:Engineering
  • 刊物主题:Physics
    Mechanics, Fluids and Thermodynamics
    Chinese Library of Science
  • 出版者:Zhejiang University Press, co-published with Springer
  • ISSN:1862-1775
文摘
Short-term load forecasting (STLF) plays a very important role in improving the economy and security of electricity system operations. In this paper, a hybrid STLF method is proposed based on the improved ensemble empirical mode decomposition (IEEMD) and back propagation neural network (BPNN). To alleviate the mode mixing and end-effect problems in traditional empirical mode decomposition (EMD), an IEEMD is presented based on the degree of wave similarity. By applying the IEEMD method, the nonlinear and nonstationary original load series is decomposed into a finite number of stationary intrinsic mode functions (IMFs) and a residual. Among these components, the high frequency (namely IMF1) is always so small that it has little contribution to model fitting, while it sometimes has a great disturbance for the STLF. Therefore, the IMF1 is removed in the proposed hybrid method for denoising. The remaining IMFs and residual are forecast by BPNN, and then the forecasting results of each component are combined with BPNN to obtain the final predicted load series. Three groups of studies were done to evaluate the effectiveness of the proposed hybrid method. The results show that the proposed hybrid method outperforms other methods both mentioned in this paper and previous studies in terms of all the three standard statistical indicators considered in this study. Keywords Ensemble empirical mode decomposition (EEMD) Intrinsic mode functions (IMFs) Back propagation neural network (BPNN) Short-term load forecasting (STLF)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700