用户名: 密码: 验证码:
An improved hybrid boundary node method for 2D crack problems
详细信息    查看全文
  • 作者:Fei Tan (1)
    Youliang Zhang (1)
    Yinping Li (1)

    1. State Key Laboratory of Geomechanics and Geotechnical Engineering
    ; Institute of Rock and Soil Mechanics ; Chinese Academy of Sciences ; Wuhan ; 430071 ; Hubei ; People鈥檚 Republic of China
  • 关键词:Crack problems ; Stress intensity factors ; Displacement discontinuity method ; Hybrid boundary node method ; Iterative hybrid technique
  • 刊名:Archive of Applied Mechanics (Ingenieur Archiv)
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:85
  • 期:1
  • 页码:101-116
  • 全文大小:814 KB
  • 参考文献:1. Barsoum R.S.: On the use of isoparametric finite elements in linear fracture mechanics. Int. J. Numer. Methods Eng. 10, 25鈥?7 (1976) CrossRef
    2. Qian G.L., Gu S.N., Jiang J.S.: A finite element model of cracked plates and application to vibration problems. Comput. Struct. 39(5), 483鈥?87 (1991) CrossRef
    3. Ayhan A.O.: Mixed mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates. Eng. Fract. Mech. 71(7), 1059鈥?079 (2004) CrossRef
    4. Hung N.D., Ngoc T.T.: Analysis of cracked plates and shells using 鈥渕etis鈥?finite element model. Finite Elem. Anal. Des. 40(8), 855鈥?78 (2004) CrossRef
    5. Mo毛s N., Dolbow J., Belytschko T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131鈥?50 (1999) CrossRef
    6. Daux C., Mo毛s N., Dolbow J. et聽al.: Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Meth. Eng. 48, 1741鈥?760 (2000) CrossRef
    7. Sukumar N., Mo毛s N., Moran B. et聽al.: Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Methods Eng. 48, 1549鈥?570 (2000) CrossRef
    8. Areias P., Belytschko T.: Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int. J. Numer. Methods Eng. 63, 760鈥?88 (2005) CrossRef
    9. Stolarska M., Chopp D.L., Mo毛s N. et聽al.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51, 943鈥?60 (2001) CrossRef
    10. Bachene M., Tiberkak R., Rechak S.: Vibration analysis of cracked plates using the extended finite element method. Arch. Appl. Mech. 79(3), 249鈥?62 (2009) CrossRef
    11. Gonzalez-Albuixech V.F., Giner E., Tarancon J.E. et聽al.: Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method. Int. J. Numer. Methods Eng. 94, 740鈥?57 (2013) CrossRef
    12. Venturini W.S., Brebbia C.A.: Some applications of the boundary element method in geomechanics. Int. J. Numer. Anal. Met. 7(4), 419鈥?33 (1983) CrossRef
    13. Telles J.C.F., Guimaraes S.: Green鈥檚 function: a numerical generation for fracture mechanics problems via boundary elements. Comput. Methods Appl. Mech. 188(4), 847鈥?58 (2000) CrossRef
    14. Silveira N.P.P., Guimar茫es S., Telles J.C.F.: A numerical Green鈥檚 function BEM formulation for crack growth simulation. Eng. Anal. Bound. Elem. 29(11), 978鈥?85 (2005) CrossRef
    15. Leonel E.D., Venturini W.S.: Multiple random crack propagation using a boundary element formulation. Eng. Fract. Mech. 78(6), 1077鈥?090 (2011) CrossRef
    16. Wen P.H., Aliabadi M.H.: Dual Boundary element method for modelling curved crack paths. Int. J. Fract. 176(1), 127鈥?33 (2012) CrossRef
    17. Frangi A., Novati G., Springhetti R. et聽al.: 3D fracture analysis by the symmetric Galerkin BEM. Comput. Mech. 28(3-4), 220鈥?32 (2002) CrossRef
    18. Pham A.D., Mouhoubi S., Bonnet M. et聽al.: Fast multipole method applied to symmetric Galerkin boundary element method for 3D elasticity and fracture problems. Eng. Anal. Bound. Elem. 36(12), 1838鈥?847 (2012) CrossRef
    19. Crouch S.L.: Solution of plane elasticity problems by the displacement discontinuity method. Int. J. Numer. Methods Eng. 10, 301鈥?43 (1976) CrossRef
    20. Yan X.: A special crack tip displacement discontinuity element. Mech. Res. Commun. 31(6), 651鈥?59 (2004) CrossRef
    21. Exadaktylos G., Xiroudakis G.: A G2 constant displacement discontinuity element for analysis of crack problems. Comput. Mech. 45(4), 245鈥?61 (2010) CrossRef
    22. Ameen M., Raghu P.B.K., Gopalakrishnan A.R.: Modeling of concrete cracking-A hybrid technique of using displacement discontinuity element method and direct boundary element method. Eng. Anal. Bound. Elem. 35(9), 1054鈥?059 (2011) CrossRef
    23. Xiao H.T., Yue Z.Q.: A three-dimensional displacement discontinuity method for crack problems in layered rocks. Int. J. Rock Mech. Min. 48(3), 412鈥?20 (2011) CrossRef
    24. Ritz E., Mutlu O., Pollard D.D.: Integrating complementarity into the 2D displacement discontinuity boundary element method to model faults and fractures with frictional contact properties. Comput. Geosci. 45, 304鈥?12 (2012) CrossRef
    25. Wang S., Zhang H.: Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Arch. Appl. Mech. 81(10), 1351鈥?363 (2011) CrossRef
    26. Zhuang X., Augarde C., Bordas S.: Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling. Int. J. Numer. Methods Eng. 86(2), 249鈥?68 (2011) CrossRef
    27. Rabczuk T., Belytschko T.: Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Methods Eng. 61(13), 2316鈥?343 (2004) CrossRef
    28. Rabczuk T., Belytschko T.: A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput. Method Appl. Mech. Eng. 196(29), 2777鈥?799 (2007) CrossRef
    29. Rabczuk T., AreiasP. M. A.: A new approach for modelling slip lines in geological materials with cohesive models. Int. J Numer. Anal. Methods 30(11), 1159鈥?172 (2006) CrossRef
    30. Rabczuk T., Bordas S., Zi G.: A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Comput. Mech. 40(3), 473鈥?95 (2007) CrossRef
    31. Rabczuk T., Zi G.: A meshfree method based on the local partition of unity for cohesive cracks. Comput. Mech. 39(6), 743鈥?60 (2007) CrossRef
    32. Zi G., Rabczuk T., Wall W.: Extended meshfree methods without branch enrichment for cohesive cracks. Comput. Mech. 40(2), 367鈥?82 (2007) CrossRef
    33. Ching H.K., Batra R.C.: Determination of crack tip fields in linear elastostatics by the meshless local Petrov鈥揋alerkin (MLPG) method. Comput. Model. Eng. Sci. 2(2), 273鈥?89 (2001)
    34. Gu Y.T., Wang W., Zhang L.C. et聽al.: An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Eng. Fract. Mech. 78(1), 175鈥?90 (2011) CrossRef
    35. Chau-Dinh T., Zi G., Lee P.S. et聽al.: Phantom-node method for shell models with arbitrary cracks. Comput. Struct. 92, 242鈥?56 (2012) CrossRef
    36. Vu-Bac, N., Nguyen-Xuan, H., Chen, L., et聽al.: A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J. Appl. Math. 2013. Article ID 978026 (2013)
    37. Moosavi M.R., Delfanian F., Khelil A.: Orthogonal meshless finite volume method applied to crack problems. Thin Wall. Struct. 52, 61鈥?5 (2012) CrossRef
    38. Moosavi M.R.: Orthogonal meshless finite volume method applied to elastodynamic crack problems. Int. J. Fract. 179(1-2), 1鈥? (2013) CrossRef
    39. Karageorghis A., Poullikkas A., Berger J.R.: Stress intensity factor computation using the method of fundamental solutions. Comput. Mech. 37, 445鈥?54 (2006) CrossRef
    40. Berger J.R., Karageorghis A., Martin P.A.: Stress intensity factor computation using the method of fundamental solutions: mixed-mode problems. Int. J. Numer. Methods Eng. 69, 469鈥?83 (2007) CrossRef
    41. Zhang J.M., Yao Z.H., Li H.: A hybrid boundary node method. Int. J. Numer. Methods Eng. 53, 751鈥?63 (2002) CrossRef
    42. Zhang J.M.: Numerical simulation of 3-D potential problems by Regular hybrid boundary node method. Int. J. Comput. Methods Eng. Sci. Mech. 9(2), 111鈥?20 (2008) CrossRef
    43. Miao Y., Wang Y.H.: Development of hybrid boundary node method in two dimensional elasticity. Eng. Anal. Bound. Elem. 29, 703鈥?12 (2005) CrossRef
    44. Miao Y., Wang Y.H.: Meshless analysis for three-dimensional elasticity with singular hybrid boundary node method. Appl. Mathods Mech. 27(5), 673鈥?81 (2006) CrossRef
    45. Yan F., Wang Y.H., Miao Y. et聽al.: Dual reciprocity hybrid boundary node method for free vibration analysis. J. Sound Vib. 32, 1036鈥?057 (2009) CrossRef
    46. Miao Y., He T.G., Yang Q. et聽al.: Multi-domain hybrid boundary node method for evaluating top-down crack in asphalt pavements. Eng. Anal. Bound. Elem. 34(9), 755鈥?60 (2010) CrossRef
    47. Miao Y., He T.G., Luo H. et聽al.: Dual hybrid boundary node method for solving transient dynamic fracture problems. Comput. Model. Eng. Sci. 85(6), 481鈥?98 (2012)
    48. Olson, J.E.: Fracture mechanics analysis of joints and veins. Dissertation, Stanford University (1991)
    49. Tada H., Paris P.C., Irwin G.R. et聽al.: The Stress Analysis of Cracks Handbook. ASME Press, New York (2000) CrossRef
    50. Ma G.W., An X.M., Zhang H.H. et聽al.: Modeling complex crack problems using the numerical manifold method. Int. J. Fract. 156(1), 21鈥?5 (2009) CrossRef
    51. Fett T.: Stress intensity factors and / T-stress for single and double-edge-cracked circular disks under mixed boundary conditions. Eng. Fract. Mech. 69(1), 69鈥?3 (2002) CrossRef
    52. Liu J., Lin G., Li X. et聽al.: Evaluation of stress intensity factors for multiple cracked circular disks under crack surface tractions with SBFEM. China Ocean Eng. 27, 417鈥?26 (2013) CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics
    Complexity
    Fluids
    Thermodynamics
    Systems and Information Theory in Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0681
文摘
The meshless hybrid boundary node method (HBNM) is a promising method for solving boundary value problems and is further developed and numerically implemented for 2D crack problems in this paper, in which the displacement discontinuity method (DDM) is introduced, and an iterative hybrid technique is employed. In this approach, the original problem is decomposed into two subsidiary problems, and the HBNM is used to model the finite domain of the body without crack, while DDM is utilized to represent the cracks. The results will be added and compared with the boundary conditions of the original problem. Iteration will be performed between the external boundaries and crack faces until all of the boundary conditions are satisfied. Thus, the advantages of the component methods are effectively combined. Numerical examples are given to illustrate the implementation and performance of the present method. It is shown that the high accuracy can be achieved with a small number of nodes, and the present iterative hybrid approach is very suitable for modeling complex multi-cracks and branched cracks problems and is also very easy to be extended to solve the crack propagation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700