用户名: 密码: 验证码:
Modulating Selectivity in Nanogap Sensors
详细信息    查看全文
文摘
Interference or crosstalk of coexisting redox species results in overlapping of electrochemical signals, and it is a major hurdle in sensor development. In nanogap sensors, redox cycling between two independently biased working electrodes results in an amplified electrochemical signal and an enhanced sensitivity. Here, we report new strategies for selective sensing of three different redox species in a nanogap sensor of a 2 fL volume. Our approach relies on modulating the electrode potentials to define specific potential windows between the two working electrodes; consequently, specific detection of each redox species is achieved. Finite element modeling is employed to simulate the electrochemical processes in the nanogap sensor, and the results are in good agreement with those of experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700