用户名: 密码: 验证码:
Electrospinning of PELA/PPY Fibrous Conduits: Promoting Peripheral Nerve Regeneration in Rats by Self-Originated Electrical Stimulation
详细信息    查看全文
文摘
Peripheral nerve injuries represent a great challenge for surgeons. The conductive neural scaffold has experienced increasing interest because of its good biocompatibility and similar electrical properties as compared to those of a normal nerve. Herein, nerve conduits made from poly(d,l-lactide)-co-poly(ethylene glycol) and polypyrrole (20%, 30%, and 50%) (PELA–PPY) were prepared by electrospinning, and used in regeneration of peripheral nerve defects. The results of an in vitro experiment indicated a high biocompatibility for the as-prepared materials, supporting the attachment and proliferation of a rat pheochromocytoma PC-12 cell. Furthermore, the PELA–PPY nerve conduit implanted in the sciatic nerve defects (10 mm) of the Spraguee–Dawley rats for 12 weeks showed similar results with the autograft, while it demonstrated a better outcome than the PELA nerve conduit in electrophysiological examination, sciatic function index, total amount of regenerated myelinated nerve fibers, axon diameter, myelin thickness, and several immunohistochemistry indices (S-100, laminin, neurofilament, bromodeoxyuridine, and glial fibrillary acidic portein). We supposed that the bioactivity is mainly generated by the PPY in composite nanofibers which could transmit self-originated electrical stimulation between cells. Due to the facile preparation and excellent in vivo performance, the PPY–PELA nerve conduit is promising for use as a bioengineered biomaterial for peripheral nerve regeneration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700