用户名: 密码: 验证码:
Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se2 Photocathode via TiO2-Coupled Buffer Layers
详细信息    查看全文
文摘
We report on the photoelectrochemical (PEC) performance and stability of Cu(In,Ga)Se2 (CIGS)-based photocathodes for photocatalytic hydrogen evolution from water. Various functional overlayers, such as CdS, TiO2, ZnxSnyOz, and a combination of the aforementioned, were applied on the CIGS to improve the performance and stability. We identified that the insertion of TiO2 overlayer on p-CIGS/n-buffer layers significantly improves the PEC performance. A multilayered photocathode consisting of CIGS/CdS/TiO2/Pt exhibited the best current–potential characteristics among the tested photocathodes, which demonstrates a power-saved efficiency of 2.63%. However, repeated linear sweep voltammetry resulted in degradation of performance. In this regard, we focused on the PEC durability issues through in-depth chemical characterization that revealed the degradation was attributed to atomic redistribution of elements constituting the photocathode, namely, in-diffusion of Pt catalysts, out-diffusion of elements from the CIGS, and removal of the metal-oxide layers; the best-performing CIGS/CdS/TiO2/Pt photocathode retained its initial performance until the TiO2 overlayer was removed. It was also found that the durability of CIGS photocathodes with a TiO2-coated metal-oxide buffer layer such as ZnxSnyOz was better than those with a TiO2-coated CdS, and the degradation mechanism was different, suggesting that the stability of a CIGS-based photocathode can be improved by careful design of the structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700