用户名: 密码: 验证码:
Control of Symmetry Breaking Size and Aspect Ratio in Gold Nanorods: Underlying Role of Silver Nitrate
详细信息    查看全文
文摘
Single crystal gold nanorods remain one of the most important and intensively studied anisotropic nanocrystals. The aspect ratio of the nanorods is controlled during the colloidal synthesis using silver nitrate; however, the mechanisms for the underlying control are not well understood. Here, we investigate the growth of gold nanocrystals at the stage where they break symmetry and begin anisotropic growth into nanorods. Using high resolution electron microscopy, we determine directly the size and atomic structure of the nanocrystals at the symmetry breaking point. We find that silver nitrate controls the size of the crystal at which symmetry breaking occurs. The seed crystal undergoes a symmetry breaking event at a critical diameter between 4 and 6 nm that depends upon the [HAuCl4]:[AgNO3] ratio. The smallest diameter for symmetry breaking, ∼4 nm, is observed at the lowest [HAuCl4]:[AgNO3] ratio (i.e., the highest AgNO3 concentration) corresponding to the minimum size at which a “truncation” can form, a precursor to a {110} facet. The diameter of the nanocrystal at the symmetry breaking point becomes the width of the nascent nanorod, and this in turn determines the final nanorod width. Surprisingly, the [HAuCl4]:[AgNO3] ratio has little effect on the final nanorod length. Our observations explain why the nanorod aspect ratio is constrained within a limited range. This provides a rational framework for controlling width and aspect ratio in the growth of single crystal gold nanorods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700