用户名: 密码: 验证码:
Rational Synthesis and Investigation of Porous Metal–Organic Framework Materials from a Preorganized Heterometallic Carboxylate Building Block
详细信息    查看全文
文摘
The tetranuclear heterometallic complex [Li2Zn2(piv)6(py)2] (1, where piv = pivalate and py = pyridine) has been successfully employed as a presynthesized node for the construction of four porous metal–organic frameworks (MOFs) [Li2Zn2(R-bdc)3(bpy)]·solv (2-R, R-bdc2–; R = H, Br, NH2, NO2) by reaction with 4,4′-bipyridine (bpy) and terephthalate anionic linkers. The [Li2Zn2] node is retained in the products, representing a rare example of the rational step-by-step design of isoreticular MOFs based on complex heterometallic building units. The permanent porosity of the activated frameworks was confirmed by gas adsorption isotherm measurements (N2, CO2, CH4). Three compounds, 2-H, 2-Br, and 2-NH2 (but not 2-NO2), feature extensive hysteresis between the adsorption and desorption curves in the N2 isotherms at low pressures. The substituents R decorate the inner surface and also control the aperture of the channels, the volume of the micropores, and the overall surface area, thus affecting both the gas uptake and adsorption selectivity. The highest CO2 absorption at ambient conditions (105 cm3·g–1 or 21 wt % at 273 K and 1 bar for 2-NO2) is above the average values for microporous MOFs. The photoluminescent properties of the prototypic 2-H as well as the corresponding host–guest compounds with various aromatic molecules (benzene, toluene, anisole, and nitrobenzene) were systematically investigated. We discovered a rather complex pattern in the emission response of this material depending on the wavelength of excitation as well as the nature of the guest molecules. On the basis of the crystal structure of 2-H, a mechanism for these luminescent properties is proposed and discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700