用户名: 密码: 验证码:
Engineering a Dual-Layer Chitosan–Lactide Hydrogel To Create Endothelial Cell Aggregate-Induced Microvascular Networks In Vitro and Increase Blood Perfusion In Vivo
详细信息    查看全文
  • 作者:Sungwoo Kim ; Toshiyuki Kawai ; Derek Wang ; Yunzhi Yang
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:August 3, 2016
  • 年:2016
  • 卷:8
  • 期:30
  • 页码:19245-19255
  • 全文大小:747K
  • 年卷期:0
  • ISSN:1944-8252
文摘
Here, we report the use of chemically cross-linked and photo-cross-linked hydrogels to engineer human umbilical vein endothelial cell (HUVEC) aggregate-induced microvascular networks to increase blood perfusion in vivo. First, we studied the effect of chemically cross-linked and photo-cross-linked chitosan–lactide hydrogels on stiffness, degradation rates, and HUVEC behaviors. The photo-cross-linked hydrogel was relatively stiff (E = ∼15 kPa) and possessed more compact networks, denser surface texture, and lower enzymatic degradation rates than the relatively soft, chemically cross-linked hydrogel (E = ∼2 kPa). While both hydrogels exhibited nontoxicity, the soft chemically cross-linked hydrogels expedited the formation of cell aggregates compared to the photo-cross-linked hydrogels. Cells on the less stiff, chemically cross-linked hydrogels expressed more matrix metalloproteinase (MMP) activity than the stiffer, photo-cross-linked hydrogel. This difference in MMP activity resulted in a more dramatic decrease in mechanical stiffness after 3 days of incubation for the chemically cross-linked hydrogel, as compared to the photo-cross-linked one. After determining the physical and biological properties of each hydrogel, we accordingly engineered a dual-layer hydrogel construct consisting of the relatively soft, chemically cross-linked hydrogel layer for HUVEC encapsulation, and the relatively stiff, acellular, photo-cross-linked hydrogel for retention of cell-laden microvasculature above. This dual-layer hydrogel construct enabled a lasting HUVEC aggregate-induced microvascular network due to the combination of stable substrate, enriched cell adhesion molecules, and extracellular matrix proteins. We tested the dual-layer hydrogel construct in a mouse model of hind-limb ischemia, where the HUVEC aggregate-induced microvascular networks significantly enhanced blood perfusion rate to ischemic legs and decreased tissue necrosis compared with both no treatment and nonaggregated HUVEC-loaded hydrogels within 2 weeks. This study suggests an effective means for regulating hydrogel properties to facilitate a stable, HUVEC aggregate-induced microvascular network for a variety of vascularized tissue applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700