用户名: 密码: 验证码:
Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%
详细信息    查看全文
文摘
The mean power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs) is mainly limited by the low photovoltage and fill factor (FF), which are derived from the high redox potential of polysulfide electrolyte and the poor catalytic activity of the counter electrode (CE), respectively. Herein, we report that this problem is overcome by adopting Ti mesh supported mesoporous carbon (MC/Ti) CE. The confined area in Ti mesh substrate not only offers robust carbon film with submillimeter thickness to ensure high catalytic capacity, but also provides an efficient three-dimension electrical tunnel with better conductivity than state-of-art Cu2S/FTO CE. More importantly, the MC/Ti CE can down shift the redox potential of polysulfide electrolyte to promote high photovoltage. In all, MC/Ti CEs boost PCE of CdSe0.65Te0.35 QDSCs to a certified record of 11.16% (Jsc = 20.68 mA/cm2, Voc = 0.798 V, FF = 0.677), an improvement of 24% related to previous record. This work thus paves a way for further improvement of performance of QDSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700