用户名: 密码: 验证码:
Symmetrical Permeable Membranes Consisting of Overlapped Block Copolymer Cylindrical Micelles for Nanoparticle Size Fractionation
详细信息    查看全文
文摘
Free-standing symmetrical porous membranes consisting of uniform cylindrical micelles were prepared from a polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer following a process combining self-assembly and nonsolvent-induced phase separation (SNIPS). The fabricated membranes displayed an impressive ultrastructure by the overlapping of the cylindrical micelles throughout the whole membrane profile (∼65 μm). The effects of copolymer molecular weight and membrane-formation condition on membrane morphology were investigated and discussed in detail. It was concluded that the cylindrical micellar membranes could be obtained in a wide window of fabrication conditions as low molecular weight of PS-b-P4VP was used as the raw material. The permeation tests indicated that the water permeability of the symmetrical membranes reached 400 L/(h m2 bar) in neutral condition, which was comparable to that of the block copolymer (BCP) isoporous membrane reported in the literature. Significantly, the permeation and separation properties of the symmetrical membranes exhibiting a strongly pH-dependent character as the pH of feed solution varied between 1 and 6. This phenomenon was attributed to the pH-responsive conformational change of P4VP corona in the micellar aggregates of BCP. The potential application of the developed membranes in the size fractionation of nanoparticles with a wide size distribution was demonstrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700