用户名: 密码: 验证码:
Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening
详细信息    查看全文
文摘
This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H+ form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H+ ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO42–, Cl, and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700