用户名: 密码: 验证码:
(Almost) Stationary Isotachophoretic Concentration Boundary in a Nanofluidic Channel Using Charge Inversion
详细信息    查看全文
文摘
The present work is an experimental study of a new means to induce a quasi-stationary boundary for concentration or separation in a nanochannel induced by charge inversion. Instead of using pressure-driven counter-flow to keep the front stationary, we exploit charge inversion by a highly charged electrolyte, Ru(bpy)3Cl2, that changes the sign of the zeta potential in part of the channel from negative to positive. Having a non-charge inverting electrolyte (MgCl2) in the other part of the channel and applying an electric field can create a standing front at the interface between them without added dispersion due to an externally applied pressure-driven counterflow. The resulting slow moving front position can be easily imaged optically since Ru(bpy)3Cl2 is fluorescent. A simple analytical model for the velocity field and front axial position that reproduces the experimental location of the front shows that the location can be tuned by changing the concentration of the electrolytes (and thus local zeta potential). Both of these give the charge inversion-mediated boundary significant advantages over current methods of concentration and separation and the method is, therefore, of particular importance to chemical and biochemical analysis systems such as chromatography and separations and for enhancing the stacking performance of field amplified sample injection and isotachophoresis. By choosing a non-charge inverting electrolyte other than MgCl2, either this electrolyte or the Ru(bpy)3Cl2 solution can be made to be the leading or trailing electrolyte.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700