用户名: 密码: 验证码:
Methacrylate Copolymers with Liquid Crystalline Side Chains for Organic Gate Dielectric Applications
详细信息    查看全文
文摘
Polymers for all-organic field-effect transistors are under development to cope with the increasing demand for novel materials for organic electronics. Besides the semiconductor, the dielectric layer determines the efficiency of the final device. Poly(methyl methacrylate) (PMMA) is a frequently used dielectric. In this work, the chemical structure of this material was stepwise altered by incorporation of cross-linkable and/or self-organizing comonomers to improve the chemical stability and the dielectric properties. Different types of cross-linking methods were used to prevent dissolution, swelling or intermixing of the dielectric e.g. during formation processes of top electrodes or semiconducting layers. Self-organizing comonomers were expected to influence the dielectric/semiconductor interface, and moreover, to enhance the chemical resistance of the dielectric. Random copolymers were obtained by free radical and reversible addition鈥揻ragmentation chain transfer (RAFT) polymerization. With 6-[4-(4鈥?cyanophenyl)phenoxy]alkyl side chains having hexyl or octyl spacer, thermotropic liquid crystalline (LC) behavior and nanophase separation into smectic layers was observed, while copolymerization with methyl methacrylate induced molecular disorder. In addition to chemical, thermal and structural properties, electrical characteristics like breakdown field strength (EBD) and relative permittivity (k) were determined. The dielectric films were studied in metal鈥搃nsulator鈥搈etal setups. EBD appeared to be strongly dependent on the type of electrode used and especially the ink formulation. Cross-linking of PMMA yielded an increase in EBD up to 4.0 MV/cm with Ag and 5.7 MV/cm with PEDOT:PSS electrodes because of the increased solvent resistance. The LC side chains reduce the ability for cross-linking resulting in decreased breakdown field strengths.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700