用户名: 密码: 验证码:
Controlled Suppression of Wear on the Nanoscale by Ultrasonic Vibrations
详细信息    查看全文
文摘
Wear on the nanoscale, as evidenced by the formation of periodic ripples on a model polystyrene thin film while a sharp tip is sliding on it with a normal force in the 渭N range, is shown to be suppressed by the application of ultrasonic vibrations of amplitude Aexc. An accurate calibration of the transducer excitation amplitude is achieved by a home-built setup based on a laser Doppler vibrometer. The corrugation of the typical ripple pattern that is formed in the absence of vibrations is reduced when the excitation frequency matches the contact resonance of the system and Aexc progressively increases. Above a critical value of Aexc, the ripples completely disappear, while the friction levels off at a finite value determined by the normal force and the vibration amplitude. This value can be significantly smaller than the value of the macroscopic friction coefficient. In addition to the control of wear in general, this opens up the possibility of controlled nanolithography with improved accuracy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700